These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 3173619)

  • 1. [Results of concurrent flow dialysis on capillary dialyzers with high permeability. Comparison with the classical counter-current technic].
    Montagnac R; Schillinger F; Milcent R; Turret MM; Manceaux JC
    Nephrologie; 1988; 9(2):93-4. PubMed ID: 3173619
    [No Abstract]   [Full Text] [Related]  

  • 2. [High flow dialyzers].
    Kes P
    Lijec Vjesn; 2002; 124(1-2):50-1. PubMed ID: 12038100
    [No Abstract]   [Full Text] [Related]  

  • 3. Increased binding of beta-2-microglobulin to blood cells in dialysis patients treated with high-flux dialyzers compared with low-flux membranes contributed to reduced beta-2-microglobulin concentrations. Results of a cross-over study.
    Traut M; Haufe CC; Eismann U; Deppisch RM; Stein G; Wolf G
    Blood Purif; 2007; 25(5-6):432-40. PubMed ID: 17957097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational evaluation of dialysis fluid flow in dialyzers with variously designed jackets.
    Yamamoto K; Matsuda M; Hirano A; Takizawa N; Iwashima S; Yakushiji T; Fukuda M; Miyasaka T; Sakai K
    Artif Organs; 2009 Jun; 33(6):481-6. PubMed ID: 19473145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Technical characterization of dialysis fluid flow of newly developed dialyzers using mass transfer correlation equations.
    Kunikata S; Fukuda M; Yamamoto K; Yagi Y; Matsuda M; Sakai K
    ASAIO J; 2009; 55(3):231-5. PubMed ID: 19357496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Permeability of cuprophane membranes to pyrogens in capillary dialyzers].
    Visacki M; Mihajlović B; Asanin R; Knezević E
    Med Pregl; 1986; 39(7-8):355-7. PubMed ID: 3821674
    [No Abstract]   [Full Text] [Related]  

  • 7. Does an alteration of dialyzer design and geometry affect biocompatibility parameters?
    Opatrný K; Krouzzecký A; Polanská K; Mares J; Tomsů M; Bowry SK; Vienken J
    Hemodial Int; 2006 Apr; 10(2):201-8. PubMed ID: 16623675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new synthetic dialyzer with advanced permselectivity for enhanced low-molecular weight protein removal.
    Krieter DH; Lemke HD; Wanner C
    Artif Organs; 2008 Jul; 32(7):547-54. PubMed ID: 18638309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [A new method of hemodialysis combining a high permeability membrane for the medium molecules and a dialysis bath in a closed circuit].
    Funck-Brentano JL; Sausse A; Man NK; Granger A; Rondon-Nucete M; Zingraff J; Jungers P
    Proc Eur Dial Transplant Assoc; 1972; 9():55-66. PubMed ID: 4668928
    [No Abstract]   [Full Text] [Related]  

  • 10. A pilot study of twin dialyzers in parallel to enhance delivered KT/V.
    Sridhar N; Hayes P; Wattie R; Frentzel J; Mahran K
    Clin Nephrol; 2000 May; 53(5):378-83. PubMed ID: 11305811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Experience with the multiple use of dialyzers].
    Strokov AG; Poz IaL; Baeva LB; Levitskiĭ ER; Annenkov AE; Rud'ko IA; Kubatiev AA
    Ter Arkh; 1994; 66(6):60-5. PubMed ID: 7940372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Middle molecule clearance in current dialysers.
    von Hartitzsch B; Hoenich NA; Peterson RJ; Buselmeier TJ; Kerr DN; Kjellstrand CM
    Proc Eur Dial Transplant Assoc; 1973; 10(0):522-7. PubMed ID: 4802533
    [No Abstract]   [Full Text] [Related]  

  • 13. TMP revisited: the importance of plasma colloid osmotic pressure in high-flux dialyzers.
    Schneditz D
    Nephrol Dial Transplant; 2011 Feb; 26(2):411-3. PubMed ID: 21273239
    [No Abstract]   [Full Text] [Related]  

  • 14. Optimization of collagen dialysis membranes.
    Stenzel KH; Rubin AL; Yamayoshi W; Miyata T; Suzuki T; Sonde T; Nishizawa M
    Trans Am Soc Artif Intern Organs; 1971; 17():293-8. PubMed ID: 5158107
    [No Abstract]   [Full Text] [Related]  

  • 15. Antithrombogenic cellulose membranes for blood dialysis.
    Merrill EW; Salzman EW; Lipps BJ; Gilliland ER; Austen WG; Joison J
    Trans Am Soc Artif Intern Organs; 1966; 12():139-50. PubMed ID: 5960693
    [No Abstract]   [Full Text] [Related]  

  • 16. Impact of convective transport on dialyzer clearance.
    Galach M; Ciechanowska A; Sabalińska S; Waniewski J; Wójcicki J; Weryńskis A
    J Artif Organs; 2003; 6(1):42-8. PubMed ID: 14598124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Handling of high-permeability DIAPES: practical considerations.
    Potier J
    Contrib Nephrol; 2003; (138):110-6. PubMed ID: 12463153
    [No Abstract]   [Full Text] [Related]  

  • 18. Laboratory and clinical evaluation of a small countercurrent dialyzer, the Miniklung.
    Hunt JR; Sadler JH; Shinaberger JH; Galletti PM
    Trans Am Soc Artif Intern Organs; 1968; 14():109-13. PubMed ID: 5701521
    [No Abstract]   [Full Text] [Related]  

  • 19. Dialyzer clearances and mass transfer-area coefficients for small solutes at low dialysate flow rates.
    Leypoldt JK; Kamerath CD; Gilson JF; Friederichs G
    ASAIO J; 2006; 52(4):404-9. PubMed ID: 16883120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increasing dialysate flow rate increases dialyzer urea clearance and dialysis efficiency: an in vivo study.
    Azar AT
    Saudi J Kidney Dis Transpl; 2009 Nov; 20(6):1023-9. PubMed ID: 19861865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.