These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 31736275)

  • 1. In search of the next super models.
    Goedel A; Grote Beverborg N; Sahara M; Chien KR
    EMBO Mol Med; 2019 Dec; 11(12):e11502. PubMed ID: 31736275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disease modelling and drug discovery for hypertrophic cardiomyopathy using pluripotent stem cells: how far have we come?
    Lam CK; Wu JC
    Eur Heart J; 2018 Nov; 39(43):3893-3895. PubMed ID: 30010924
    [No Abstract]   [Full Text] [Related]  

  • 3. Kidney organoids-a new tool for kidney therapeutic development.
    Bonventre JV
    Kidney Int; 2018 Dec; 94(6):1040-1042. PubMed ID: 30466559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Untangling the Biology of Genetic Cardiomyopathies with Pluripotent Stem Cell Disease Models.
    Buikema JW; Wu SM
    Curr Cardiol Rep; 2017 Apr; 19(4):30. PubMed ID: 28315121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pluripotent human stem cells: A novel tool in drug discovery.
    Phillips BW; Crook JM
    BioDrugs; 2010 Apr; 24(2):99-108. PubMed ID: 20199125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current status of pluripotent stem cells: moving the first therapies to the clinic.
    Kimbrel EA; Lanza R
    Nat Rev Drug Discov; 2015 Oct; 14(10):681-92. PubMed ID: 26391880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impacts of recent advances in cardiovascular regenerative medicine on clinical therapies and drug discovery.
    Murata M; Tohyama S; Fukuda K
    Pharmacol Ther; 2010 May; 126(2):109-18. PubMed ID: 20156482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perspective from the heart: the potential of human pluripotent stem cell-derived cardiomyocytes.
    Xu XQ; Sun W
    J Cell Biochem; 2013 Jan; 114(1):39-46. PubMed ID: 22903726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug discovery using induced pluripotent stem cell models of neurodegenerative and ocular diseases.
    Hung SSC; Khan S; Lo CY; Hewitt AW; Wong RCB
    Pharmacol Ther; 2017 Sep; 177():32-43. PubMed ID: 28223228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient CRISPR/Cas9-Based Genome Engineering in Human Pluripotent Stem Cells.
    Kime C; Mandegar MA; Srivastava D; Yamanaka S; Conklin BR; Rand TA
    Curr Protoc Hum Genet; 2016 Jan; 88():21.4.1-21.4.23. PubMed ID: 26724721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organoids for Drug Discovery and Personalized Medicine.
    Takahashi T
    Annu Rev Pharmacol Toxicol; 2019 Jan; 59():447-462. PubMed ID: 30113875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cornerstones of CRISPR-Cas in drug discovery and therapy.
    Fellmann C; Gowen BG; Lin PC; Doudna JA; Corn JE
    Nat Rev Drug Discov; 2017 Feb; 16(2):89-100. PubMed ID: 28008168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directed differentiation of pluripotent stem cells: from developmental biology to therapeutic applications.
    Irion S; Nostro MC; Kattman SJ; Keller GM
    Cold Spring Harb Symp Quant Biol; 2008; 73():101-10. PubMed ID: 19329573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differentiation and enrichment of cardiomyocytes from human pluripotent stem cells.
    Xu C
    J Mol Cell Cardiol; 2012 Jun; 52(6):1203-12. PubMed ID: 22484618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas9 genome editing in human pluripotent stem cells: Harnessing human genetics in a dish.
    González F
    Dev Dyn; 2016 Jul; 245(7):788-806. PubMed ID: 27145095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pluripotent stem cell-based disease modeling: current hurdles and future promise.
    Zeltner N; Studer L
    Curr Opin Cell Biol; 2015 Dec; 37():102-10. PubMed ID: 26629748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MLP-deficient human pluripotent stem cell derived cardiomyocytes develop hypertrophic cardiomyopathy and heart failure phenotypes due to abnormal calcium handling.
    Li X; Lu WJ; Li Y; Wu F; Bai R; Ma S; Dong T; Zhang H; Lee AS; Wang Y; Lan F
    Cell Death Dis; 2019 Aug; 10(8):610. PubMed ID: 31406109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Translation of Human-Induced Pluripotent Stem Cells: From Clinical Trial in a Dish to Precision Medicine.
    Sayed N; Liu C; Wu JC
    J Am Coll Cardiol; 2016 May; 67(18):2161-2176. PubMed ID: 27151349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human pluripotent stem cells as tools for neurodegenerative and neurodevelopmental disease modeling and drug discovery.
    Corti S; Faravelli I; Cardano M; Conti L
    Expert Opin Drug Discov; 2015 Jun; 10(6):615-29. PubMed ID: 25891144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of an induced pluripotent stem cell line from a hypertrophic cardiomyopathy patient with a pathogenic myosin binding protein C (MYBPC3) p.Arg502Trp mutation.
    Holliday M; Ross SB; Lim S; Semsarian C
    Stem Cell Res; 2018 Dec; 33():56-59. PubMed ID: 30316040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.