These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 31736443)

  • 1. The Role of Reactive Oxygen Species in Tumor Treatment and its Impact on Bone Marrow Hematopoiesis.
    Chen Y; Luo X; Zou Z; Liang Y
    Curr Drug Targets; 2020; 21(5):477-498. PubMed ID: 31736443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implications of reactive oxygen species on cancer formation and its treatment.
    Shah MA; Rogoff HA
    Semin Oncol; 2021 Jun; 48(3):238-245. PubMed ID: 34548190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Therapeutic strategies by modulating oxygen stress in cancer and inflammation.
    Fang J; Seki T; Maeda H
    Adv Drug Deliv Rev; 2009 Apr; 61(4):290-302. PubMed ID: 19249331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The positive effects of Ginsenoside Rg1 upon the hematopoietic microenvironment in a D-Galactose-induced aged rat model.
    Hu W; Jing P; Wang L; Zhang Y; Yong J; Wang Y
    BMC Complement Altern Med; 2015 Apr; 15():119. PubMed ID: 25881060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Stem cell kinetics of bone marrow in relation to cytostatic treatment].
    Laerum OD
    Tidsskr Nor Laegeforen; 1971 Jun; 91(16):1207-9 passim. PubMed ID: 4935674
    [No Abstract]   [Full Text] [Related]  

  • 6. Epigenetic and microenvironmental alterations in bone marrow associated with ROS in experimental aplastic anemia.
    Chatterjee R; Law S
    Eur J Cell Biol; 2018 Jan; 97(1):32-43. PubMed ID: 29173808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic Investigation of Bone Marrow Suppression Associated with Palbociclib and its Differentiation from Cytotoxic Chemotherapies.
    Hu W; Sung T; Jessen BA; Thibault S; Finkelstein MB; Khan NK; Sacaan AI
    Clin Cancer Res; 2016 Apr; 22(8):2000-8. PubMed ID: 26631614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antineoplastic agents and the associated myelosuppressive effects: a review.
    Barreto JN; McCullough KB; Ice LL; Smith JA
    J Pharm Pract; 2014 Oct; 27(5):440-6. PubMed ID: 25147158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benzene-induced bone-marrow toxicity: a hematopoietic stem-cell-specific, aryl hydrocarbon receptor-mediated adverse effect.
    Hirabayashi Y; Inoue T
    Chem Biol Interact; 2010 Mar; 184(1-2):252-8. PubMed ID: 20035730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting antioxidants for cancer therapy.
    Glasauer A; Chandel NS
    Biochem Pharmacol; 2014 Nov; 92(1):90-101. PubMed ID: 25078786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cancer cell killing via ROS: to increase or decrease, that is the question.
    Wang J; Yi J
    Cancer Biol Ther; 2008 Dec; 7(12):1875-84. PubMed ID: 18981733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of oxidative stress as an anticancer strategy.
    Gorrini C; Harris IS; Mak TW
    Nat Rev Drug Discov; 2013 Dec; 12(12):931-47. PubMed ID: 24287781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A herbal formula, SYKT, reverses doxorubicin‑induced myelosuppression and cardiotoxicity by inhibiting ROS‑mediated apoptosis.
    Chen T; Shen HM; Deng ZY; Yang ZZ; Zhao RL; Wang L; Feng ZP; Liu C; Li WH; Liu ZJ
    Mol Med Rep; 2017 Apr; 15(4):2057-2066. PubMed ID: 28260045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pro-oxidant natural products as anticancer agents.
    Martin-Cordero C; Leon-Gonzalez AJ; Calderon-Montano JM; Burgos-Moron E; Lopez-Lazaro M
    Curr Drug Targets; 2012 Jul; 13(8):1006-28. PubMed ID: 22594470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox Control in Acute Lymphoblastic Leukemia: From Physiology to Pathology and Therapeutic Opportunities.
    Chen Y; Li J; Zhao Z
    Cells; 2021 May; 10(5):. PubMed ID: 34067520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactive oxygen species in redox cancer therapy.
    Tong L; Chuang CC; Wu S; Zuo L
    Cancer Lett; 2015 Oct; 367(1):18-25. PubMed ID: 26187782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactive Oxygen Species and Targeted Therapy for Pancreatic Cancer.
    Zhang L; Li J; Zong L; Chen X; Chen K; Jiang Z; Nan L; Li X; Li W; Shan T; Ma Q; Ma Z
    Oxid Med Cell Longev; 2016; 2016():1616781. PubMed ID: 26881012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactive oxygen species in haematopoiesis: leukaemic cells take a walk on the wild side.
    Prieto-Bermejo R; Romo-González M; Pérez-Fernández A; Ijurko C; Hernández-Hernández Á
    J Exp Clin Cancer Res; 2018 Jun; 37(1):125. PubMed ID: 29940987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ROS-mediated iron overload injures the hematopoiesis of bone marrow by damaging hematopoietic stem/progenitor cells in mice.
    Chai X; Li D; Cao X; Zhang Y; Mu J; Lu W; Xiao X; Li C; Meng J; Chen J; Li Q; Wang J; Meng A; Zhao M
    Sci Rep; 2015 May; 5():10181. PubMed ID: 25970748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased reactive oxygen species and exhaustion of quiescent CD34-positive bone marrow cells may contribute to poor graft function after allotransplants.
    Kong Y; Song Y; Hu Y; Shi MM; Wang YT; Wang Y; Zhang XH; Xu LP; Liu KY; Deng HK; Huang XJ
    Oncotarget; 2016 May; 7(21):30892-906. PubMed ID: 27105530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.