BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 31736733)

  • 1. Coupling Robot-Aided Assessment and Surface Electromyography (sEMG) to Evaluate the Effect of Muscle Fatigue on Wrist Position Sense in the Flexion-Extension Plane.
    Mugnosso M; Zenzeri J; Hughes CML; Marini F
    Front Hum Neurosci; 2019; 13():396. PubMed ID: 31736733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muscle fatigue assessment during robot-mediated movements.
    Mugnosso M; Marini F; Holmes M; Morasso P; Zenzeri J
    J Neuroeng Rehabil; 2018 Dec; 15(1):119. PubMed ID: 30558608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robot-aided developmental assessment of wrist proprioception in children.
    Marini F; Squeri V; Morasso P; Campus C; Konczak J; Masia L
    J Neuroeng Rehabil; 2017 Jan; 14(1):3. PubMed ID: 28069028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robot-Aided Mapping of Wrist Proprioceptive Acuity across a 3D Workspace.
    Marini F; Squeri V; Morasso P; Konczak J; Masia L
    PLoS One; 2016; 11(8):e0161155. PubMed ID: 27536882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wrist Position Sense in Two Dimensions: Between-Hand Symmetry and Anisotropic Accuracy Across the Space.
    Albanese GA; Holmes MWR; Marini F; Morasso P; Zenzeri J
    Front Hum Neurosci; 2021; 15():662768. PubMed ID: 33967724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-Dependent Asymmetry of Wrist Position Sense Is Not Influenced by Stochastic Tactile Stimulation.
    Georgarakis AM; Sonar HA; Rinderknecht MD; Popp WL; Duarte JE; Lambercy O; Paik J; Martin BJ; Riener R; Klamroth-Marganska V
    Front Hum Neurosci; 2020; 14():65. PubMed ID: 32194386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robotic Assessment of Wrist Proprioception During Kinaesthetic Perturbations: A Neuroergonomic Approach.
    D'Antonio E; Galofaro E; Zenzeri J; Patané F; Konczak J; Casadio M; Masia L
    Front Neurorobot; 2021; 15():640551. PubMed ID: 33732131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robot-Assisted Training to Improve Proprioception of Wrist.
    Luo S; Yu H
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():570-576. PubMed ID: 38231807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of age and amplitude on wrist proprioceptive acuity.
    Marini F; Hughes CML; Morasso P; Masia L
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():609-614. PubMed ID: 28813887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of the Proprioceptive Neuromuscular Facilitation Contraction Sequence on Motor Skill Learning-Related Increases in the Maximal Rate of Wrist Flexion Torque Development.
    Green LA; McGuire J; Gabriel DA
    Front Hum Neurosci; 2021; 15():764660. PubMed ID: 34803640
    [No Abstract]   [Full Text] [Related]  

  • 11. A robot-aided visuomotor wrist training induces motor and proprioceptive learning that transfers to the untrained ipsilateral elbow.
    Zhu H; Wang Y; Elangovan N; Cappello L; Sandini G; Masia L; Konczak J
    J Neuroeng Rehabil; 2023 Oct; 20(1):143. PubMed ID: 37875916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Neck Pain, Cervical Extensor Muscle Fatigue, and Manual Therapy on Wrist Proprioception.
    Reece A; Marini F; Mugnosso M; Frost G; Sullivan P; Zabihhosseinian M; Zenzeri J; Holmes MWR
    J Manipulative Physiol Ther; 2022; 45(3):216-226. PubMed ID: 35906104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age-Related Decline of Wrist Position Sense and its Relationship to Specific Physical Training.
    Van de Winckel A; Tseng YT; Chantigian D; Lorant K; Zarandi Z; Buchanan J; Zeffiro TA; Larson M; Olson-Kellogg B; Konczak J; Keller-Ross ML
    Front Hum Neurosci; 2017; 11():570. PubMed ID: 29209188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proprioceptive guidance of human voluntary wrist movements studied using muscle vibration.
    Cody FW; Schwartz MP; Smit GP
    J Physiol; 1990 Aug; 427():455-70. PubMed ID: 2213604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robot-aided assessment of wrist proprioception.
    Cappello L; Elangovan N; Contu S; Khosravani S; Konczak J; Masia L
    Front Hum Neurosci; 2015; 9():198. PubMed ID: 25926785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A robot-aided visuo-motor training that improves proprioception and spatial accuracy of untrained movement.
    Elangovan N; Cappello L; Masia L; Aman J; Konczak J
    Sci Rep; 2017 Dec; 7(1):17054. PubMed ID: 29213051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Dynamic Submaximal Fatigue Protocol Alters Wrist Biomechanical Properties and Proprioception.
    Albanese GA; Falzarano V; Holmes MWR; Morasso P; Zenzeri J
    Front Hum Neurosci; 2022; 16():887270. PubMed ID: 35712530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proprioceptive control of wrist movements in Parkinson's disease. Reduced muscle vibration-induced errors.
    Rickards C; Cody FW
    Brain; 1997 Jun; 120 ( Pt 6)():977-90. PubMed ID: 9217682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proprioceptive identification of joint position versus kinaesthetic movement reproduction.
    Marini F; Ferrantino M; Zenzeri J
    Hum Mov Sci; 2018 Dec; 62():1-13. PubMed ID: 30172030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Influence of External Forces on Wrist Proprioception.
    Marini F; Contu S; Antuvan CW; Morasso P; Masia L
    Front Hum Neurosci; 2017; 11():440. PubMed ID: 28912703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.