BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 31736934)

  • 1. Changes in the Biotransformation of Green Tea Catechins Induced by Different Carbon and Nitrogen Sources in
    Fang X; Du M; Liu T; Fang Q; Liao Z; Zhong Q; Chen J; Meng X; Zhou S; Wang J
    Front Microbiol; 2019; 10():2521. PubMed ID: 31736934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential activities of fungi-derived tannases on biotransformation and substrate inhibition in green tea extract.
    Baik JH; Suh HJ; Cho SY; Park Y; Choi HS
    J Biosci Bioeng; 2014 Nov; 118(5):546-53. PubMed ID: 24856576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotransformation of catechin and extraction of active polysaccharide from green tea leaves via simultaneous treatment with tannase and pectinase.
    Baik JH; Shin KS; Park Y; Yu KW; Suh HJ; Choi HS
    J Sci Food Agric; 2015 Aug; 95(11):2337-44. PubMed ID: 25307474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The interplays between epigallocatechin-3-gallate (EGCG) and Aspergillus niger RAF106 based on metabolism.
    Liu T; Wang J; Du MR; Wang YS; Fang X; Peng H; Shi QS; Xie XB; Zhou G
    Fungal Biol; 2022; 126(11-12):727-737. PubMed ID: 36517140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermostable Tannase from
    Shao Y; Zhang YH; Zhang F; Yang QM; Weng HF; Xiao Q; Xiao AF
    Molecules; 2020 Feb; 25(4):. PubMed ID: 32093395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation and Detoxification of Aflatoxin B1 by Tea-Derived
    Fang Q; Du M; Chen J; Liu T; Zheng Y; Liao Z; Zhong Q; Wang L; Fang X; Wang J
    Toxins (Basel); 2020 Dec; 12(12):. PubMed ID: 33291337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High Performance Liquid Chromatography and Metabolomics Analysis of Tannase Metabolism of Gallic Acid and Gallates in Tea Leaves.
    Liu M; Xie H; Ma Y; Li H; Li C; Chen L; Jiang B; Nian B; Guo T; Zhang Z; Jiao W; Liu Q; Ling T; Zhao M
    J Agric Food Chem; 2020 Apr; 68(17):4946-4954. PubMed ID: 32275834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing the Flavor Profile of Summer Green Tea via Fermentation with
    Cai M; Huang L; Dong S; Diao N; Ye W; Peng Z; Fang X
    Foods; 2023 Sep; 12(18):. PubMed ID: 37761129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Change in tea polyphenol and purine alkaloid composition during solid-state fungal fermentation of postfermented tea.
    Qin JH; Li N; Tu PF; Ma ZZ; Zhang L
    J Agric Food Chem; 2012 Feb; 60(5):1213-7. PubMed ID: 22239674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tannase-converted green tea catechins and their anti-wrinkle activity in humans.
    Hong YH; Jung EY; Shin KS; Yu KW; Chang UJ; Suh HJ
    J Cosmet Dermatol; 2013 Jun; 12(2):137-43. PubMed ID: 23725307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complexing of Green Tea Catechins with Food Constituents and Degradation of the Complexes by Lactobacillus plantarum.
    Hayashi T; Ueda S; Tsuruta H; Kuwahara H; Osawa R
    Biosci Microbiota Food Health; 2012; 31(2):27-36. PubMed ID: 24936346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pH-Dependent radical scavenging capacity of green tea catechins.
    Muzolf M; Szymusiak H; Gliszczyńska-Swigło A; Rietjens IM; Tyrakowska B
    J Agric Food Chem; 2008 Feb; 56(3):816-23. PubMed ID: 18179168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bio-transformation of green tea infusion with tannase and its improvement on adipocyte metabolism.
    Kim HS; Jeon DY; Javaid HMA; Sahar NE; Lee HN; Hong SJ; Huh JY; Kim YM
    Enzyme Microb Technol; 2020 Apr; 135():109496. PubMed ID: 32146939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated Meta-omics Approaches To Understand the Microbiome of Spontaneous Fermentation of Traditional Chinese Pu-erh Tea.
    Zhao M; Su XQ; Nian B; Chen LJ; Zhang DL; Duan SM; Wang LY; Shi XY; Jiang B; Jiang WW; Lv CY; Wang DP; Shi Y; Xiao Y; Wu JL; Pan YH; Ma Y
    mSystems; 2019 Nov; 4(6):. PubMed ID: 31744906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors affecting the levels of tea polyphenols and caffeine in tea leaves.
    Lin YS; Tsai YJ; Tsay JS; Lin JK
    J Agric Food Chem; 2003 Mar; 51(7):1864-73. PubMed ID: 12643643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Delving into the Biotransformation Characteristics and Mechanism of Steamed Green Tea Fermented by
    Li M; Xiao Y; Zhong K; Wu Y; Gao H
    Foods; 2022 Mar; 11(6):. PubMed ID: 35327286
    [No Abstract]   [Full Text] [Related]  

  • 17. Enzymatic improvement in the polyphenol extractability and antioxidant activity of green tea extracts.
    Hong YH; Jung EY; Park Y; Shin KS; Kim TY; Yu KW; Chang UJ; Suh HJ
    Biosci Biotechnol Biochem; 2013; 77(1):22-9. PubMed ID: 23291774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cross-linked tannase-carbon nanotubes composite in elevating antioxidative potential of green tea extract.
    Ong CB; Annuar MSM
    J Food Biochem; 2021 Oct; 45(10):e13924. PubMed ID: 34490635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving the taste of autumn green tea with tannase.
    Cao QQ; Zou C; Zhang YH; Du QZ; Yin JF; Shi J; Xue S; Xu YQ
    Food Chem; 2019 Mar; 277():432-437. PubMed ID: 30502167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous preparation of naturally abundant and rare catechins by tannase-mediated biotransformation combining high speed counter current chromatography.
    Xia G; Hong S; Liu S
    Food Chem; 2014 May; 151():380-4. PubMed ID: 24423547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.