BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

679 related articles for article (PubMed ID: 31736993)

  • 1. Potential Mechanisms of Abiotic Stress Tolerance in Crop Plants Induced by Thiourea.
    Waqas MA; Kaya C; Riaz A; Farooq M; Nawaz I; Wilkes A; Li Y
    Front Plant Sci; 2019; 10():1336. PubMed ID: 31736993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitigating abiotic stress: microbiome engineering for improving agricultural production and environmental sustainability.
    Phour M; Sindhu SS
    Planta; 2022 Sep; 256(5):85. PubMed ID: 36125564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Abiotic stress-induced anthocyanins in plants: Their role in tolerance to abiotic stresses.
    Naing AH; Kim CK
    Physiol Plant; 2021 Jul; 172(3):1711-1723. PubMed ID: 33605458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoparticles: The Plant Saviour under Abiotic Stresses.
    Khalid MF; Iqbal Khan R; Jawaid MZ; Shafqat W; Hussain S; Ahmed T; Rizwan M; Ercisli S; Pop OL; Alina Marc R
    Nanomaterials (Basel); 2022 Nov; 12(21):. PubMed ID: 36364690
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Tiwari S; Prasad V; Chauhan PS; Lata C
    Front Plant Sci; 2017; 8():1510. PubMed ID: 28900441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat or cold priming-induced cross-tolerance to abiotic stresses in plants: key regulators and possible mechanisms.
    Hossain MA; Li ZG; Hoque TS; Burritt DJ; Fujita M; Munné-Bosch S
    Protoplasma; 2018 Jan; 255(1):399-412. PubMed ID: 28776104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 5-aminolevulinic acid-mediated plant adaptive responses to abiotic stress.
    Rhaman MS; Imran S; Karim MM; Chakrobortty J; Mahamud MA; Sarker P; Tahjib-Ul-Arif M; Robin AHK; Ye W; Murata Y; Hasanuzzaman M
    Plant Cell Rep; 2021 Aug; 40(8):1451-1469. PubMed ID: 33839877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide analysis of thiourea-modulated salinity stress-responsive transcripts in seeds of Brassica juncea: identification of signalling and effector components of stress tolerance.
    Srivastava AK; Ramaswamy NK; Suprasanna P; D'Souza SF
    Ann Bot; 2010 Nov; 106(5):663-74. PubMed ID: 20736293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The critical role of biochar to mitigate the adverse impacts of drought and salinity stress in plants.
    Wu Y; Wang X; Zhang L; Zheng Y; Liu X; Zhang Y
    Front Plant Sci; 2023; 14():1163451. PubMed ID: 37223815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant Metabolomics: An Overview of the Role of Primary and Secondary Metabolites against Different Environmental Stress Factors.
    Salam U; Ullah S; Tang ZH; Elateeq AA; Khan Y; Khan J; Khan A; Ali S
    Life (Basel); 2023 Mar; 13(3):. PubMed ID: 36983860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects.
    Etesami H; Maheshwari DK
    Ecotoxicol Environ Saf; 2018 Jul; 156():225-246. PubMed ID: 29554608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thiourea-Capped Nanoapatites Amplify Osmotic Stress Tolerance in
    Faryal S; Ullah R; Khan MN; Ali B; Hafeez A; Jaremko M; Qureshi KA
    Molecules; 2022 Sep; 27(18):. PubMed ID: 36144480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seed Priming with Phytohormones: An Effective Approach for the Mitigation of Abiotic Stress.
    Rhaman MS; Imran S; Rauf F; Khatun M; Baskin CC; Murata Y; Hasanuzzaman M
    Plants (Basel); 2020 Dec; 10(1):. PubMed ID: 33375667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Advancements and Development in Nano-Enabled Agriculture for Improving Abiotic Stress Tolerance in Plants.
    Manzoor N; Ali L; Ahmed T; Noman M; Adrees M; Shahid MS; Ogunyemi SO; Radwan KSA; Wang G; Zaki HEM
    Front Plant Sci; 2022; 13():951752. PubMed ID: 35898211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal/Metalloid-Based Nanomaterials for Plant Abiotic Stress Tolerance: An Overview of the Mechanisms.
    Sarraf M; Vishwakarma K; Kumar V; Arif N; Das S; Johnson R; Janeeshma E; Puthur JT; Aliniaeifard S; Chauhan DK; Fujita M; Hasanuzzaman M
    Plants (Basel); 2022 Jan; 11(3):. PubMed ID: 35161297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of abiotic stress tolerance in plants by endophytic microbes.
    Lata R; Chowdhury S; Gond SK; White JF
    Lett Appl Microbiol; 2018 Apr; 66(4):268-276. PubMed ID: 29359344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silicon: a duo synergy for regulating crop growth and hormonal signaling under abiotic stress conditions.
    Kim YH; Khan AL; Lee IJ
    Crit Rev Biotechnol; 2016 Dec; 36(6):1099-1109. PubMed ID: 26381374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beneficial Microorganisms Improve Agricultural Sustainability under Climatic Extremes.
    Jalal A; Oliveira CEDS; Rosa PAL; Galindo FS; Teixeira Filho MCM
    Life (Basel); 2023 Apr; 13(5):. PubMed ID: 37240747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcription Factors Associated with Abiotic and Biotic Stress Tolerance and Their Potential for Crops Improvement.
    Baillo EH; Kimotho RN; Zhang Z; Xu P
    Genes (Basel); 2019 Sep; 10(10):. PubMed ID: 31575043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.