These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 31737157)

  • 1. Generation of perfusable hollow calcium alginate microfibers with a double co-axial flow capillary microfluidic device.
    Gao C; Wang X; Du Q; Tang J; Jiang J
    Biomicrofluidics; 2019 Nov; 13(6):064108. PubMed ID: 31737157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic generation of hollow Ca-alginate microfibers.
    Meng ZJ; Wang W; Xie R; Ju XJ; Liu Z; Chu LY
    Lab Chip; 2016 Jul; 16(14):2673-81. PubMed ID: 27302737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinspired Microfibers with Embedded Perfusable Helical Channels.
    Xu P; Xie R; Liu Y; Luo G; Ding M; Liang Q
    Adv Mater; 2017 Sep; 29(34):. PubMed ID: 28639435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphological Hydrogel Microfibers with MXene Encapsulation for Electronic Skin.
    Guo J; Yu Y; Zhang D; Zhang H; Zhao Y
    Research (Wash D C); 2021; 2021():7065907. PubMed ID: 33763650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinspired Helical Microfibers from Microfluidics.
    Yu Y; Fu F; Shang L; Cheng Y; Gu Z; Zhao Y
    Adv Mater; 2017 May; 29(18):. PubMed ID: 28266759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic-based generation of functional microfibers for biomimetic complex tissue construction.
    Zuo Y; He X; Yang Y; Wei D; Sun J; Zhong M; Xie R; Fan H; Zhang X
    Acta Biomater; 2016 Jul; 38():153-62. PubMed ID: 27130274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Throughput and Controllable Fabrication of Helical Microfibers by Hydrodynamically Focusing Flow.
    Ma W; Liu D; Ling S; Zhang J; Chen Z; Lu Y; Xu J
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):59392-59399. PubMed ID: 34851622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissolvable Calcium Alginate Microfibers Produced via Immersed Microfluidic Spinning.
    Zhou T; NajafiKhoshnoo S; Esfandyarpour R; Kulinsky L
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36838018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conductive Polymer Hydrogel Microfibers from Multiflow Microfluidics.
    Guo J; Yu Y; Wang H; Zhang H; Zhang X; Zhao Y
    Small; 2019 Apr; 15(15):e1805162. PubMed ID: 30884163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Necklace-Like Microfibers with Variable Knots and Perfusable Channels Fabricated by an Oil-Free Microfluidic Spinning Process.
    Xie R; Xu P; Liu Y; Li L; Luo G; Ding M; Liang Q
    Adv Mater; 2018 Apr; 30(14):e1705082. PubMed ID: 29484717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D printing of heterogeneous microfibers with multi-hollow structure via microfluidic spinning.
    Li W; Yao K; Tian L; Xue C; Zhang X; Gao X
    J Tissue Eng Regen Med; 2022 Oct; 16(10):913-922. PubMed ID: 35802061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controllable preparation of microscale tubes with multiphase co-laminar flow in a double co-axial microdevice.
    Lan W; Li S; Lu Y; Xu J; Luo G
    Lab Chip; 2009 Nov; 9(22):3282-8. PubMed ID: 19865737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of cell composite alginate microfibers by microfluidics with the application potential of small diameter vascular grafts.
    Liu M; Zhou Z; Chai Y; Zhang S; Wu X; Huang S; Su J; Jiang J
    Biofabrication; 2017 Jun; 9(2):025030. PubMed ID: 28485303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogel microfibers with perfusable folded channels for tissue constructs with folded morphology.
    Liu Y; Xu P; Liang Z; Xie R; Ding M; Liu H; Liang Q
    RSC Adv; 2018 Jun; 8(42):23475-23480. PubMed ID: 35540297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic Seeding of Cells on the Inner Surface of Alginate Hollow Microfibers.
    Aykar SS; Alimoradi N; Taghavimehr M; Montazami R; Hashemi NN
    Adv Healthc Mater; 2022 Jun; 11(11):e2102701. PubMed ID: 35142451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of Branched and Chained Alginate Microfibers Using Theta-Glass Capillaries.
    Nishimura K; Morimoto Y; Mori N; Takeuchi S
    Micromachines (Basel); 2018 Jun; 9(6):. PubMed ID: 30424236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic Printing of Tunable Hollow Microfibers for Vascular Tissue Engineering.
    Wu Z; Cai H; Ao Z; Xu J; Heaps S; Guo F
    Adv Mater Technol; 2021 Aug; 6(8):. PubMed ID: 34458563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidics-Based Fabrication of Cell-Laden Hydrogel Microfibers for Potential Applications in Tissue Engineering.
    Wang G; Jia L; Han F; Wang J; Yu L; Yu Y; Turnbull G; Guo M; Shu W; Li B
    Molecules; 2019 Apr; 24(8):. PubMed ID: 31027249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A microfluidic strategy to fabricate ultra-thin polyelectrolyte hollow microfibers as 3D cellular carriers.
    Liu H; Wang Y; Chen W; Yu Y; Jiang L; Qin J
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109705. PubMed ID: 31499950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic Fabrication of Biomimetic Helical Hydrogel Microfibers for Blood-Vessel-on-a-Chip Applications.
    Jia L; Han F; Yang H; Turnbull G; Wang J; Clarke J; Shu W; Guo M; Li B
    Adv Healthc Mater; 2019 Jul; 8(13):e1900435. PubMed ID: 31081247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.