BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 31737659)

  • 1. Preliminary Study on the Efficient Electrohysterogram Segments for Recognizing Uterine Contractions with Convolutional Neural Networks.
    Peng J; Hao D; Liu H; Liu J; Zhou X; Zheng D
    Biomed Res Int; 2019; 2019():3168541. PubMed ID: 31737659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of convolutional neural network for recognizing uterine contractions with electrohysterogram.
    Hao D; Peng J; Wang Y; Liu J; Zhou X; Zheng D
    Comput Biol Med; 2019 Oct; 113():103394. PubMed ID: 31445226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of 8-Electrode Configuration for Recognition of Uterine Contraction with Electrohysterogram.
    Hao D; Qiao X; Song X; Wang Y; Qiu Q; Jiang H; Chen F
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():672-675. PubMed ID: 31945987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic recognition of uterine contractions with electrohysterogram signals based on the zero-crossing rate.
    Song X; Qiao X; Hao D; Yang L; Zhou X; Xu Y; Zheng D
    Sci Rep; 2021 Jan; 11(1):1956. PubMed ID: 33479344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated electrohysterographic detection of uterine contractions for monitoring of pregnancy: feasibility and prospects.
    Muszynski C; Happillon T; Azudin K; Tylcz JB; Istrate D; Marque C
    BMC Pregnancy Childbirth; 2018 May; 18(1):136. PubMed ID: 29739438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recognition of uterine contractions with electrohysterogram and exploring the best electrode combination.
    Du M; Qiu Q; Hao D; Zhou X; Yang L; Liu X
    Technol Health Care; 2022; 30(S1):235-242. PubMed ID: 35124600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization and automatic classification of preterm and term uterine records.
    Jager F; Libenšek S; Geršak K
    PLoS One; 2018; 13(8):e0202125. PubMed ID: 30153264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of Electrohysterogram Recording System for Monitoring Uterine Contraction.
    Hao D; An Y; Qiao X; Qiu Q; Zhou X; Peng J
    J Healthc Eng; 2019; 2019():4230157. PubMed ID: 31354930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-channel electrohysterography enabled uterine contraction characterization and its effect in delivery assessment.
    Shen J; Liu Y; Zhang M; Pumir A; Mu L; Li B; Xu J
    Comput Biol Med; 2023 Dec; 167():107697. PubMed ID: 37976821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acquisition and Analysis of Electrohysterogram Signal.
    R P; S SD
    J Med Syst; 2020 Feb; 44(3):66. PubMed ID: 32040634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrohysterography during pregnancy: preliminary report.
    Gondry J; Marque C; Duchene J; Cabrol D
    Biomed Instrum Technol; 1993; 27(4):318-24. PubMed ID: 8369867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regional identification of information flow termination of electrohysterographic signals: Towards understanding human uterine electrical propagation.
    Xu Y; Hao D; Taggart MJ; Zheng D
    Comput Methods Programs Biomed; 2022 Aug; 223():106967. PubMed ID: 35763875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of decision tree in determining the importance of surface electrohysterography signal characteristics for recognizing uterine contractions.
    Hao D; Qiu Q; Zhou X; An Y; Peng J; Yang L; Zheng D
    Biocybern Biomed Eng; 2019; 39(3):806-813. PubMed ID: 31787794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Prognostic value of chosen parameters of mechanical and bioelectrical uterine activity in prediction of threatening preterm labour].
    Zietek J; Sikora J; Horoba K; Matonia A; Jezewski J; Magnucki J; Kobielska L
    Ginekol Pol; 2009 Mar; 80(3):193-200. PubMed ID: 19382611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of non-invasive electrohysterographic recording techniques for monitoring uterine dynamics.
    Alberola-Rubio J; Prats-Boluda G; Ye-Lin Y; Valero J; Perales A; Garcia-Casado J
    Med Eng Phys; 2013 Dec; 35(12):1736-43. PubMed ID: 23958388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring uterine activity during labor: a comparison of 3 methods.
    Euliano TY; Nguyen MT; Darmanjian S; McGorray SP; Euliano N; Onkala A; Gregg AR
    Am J Obstet Gynecol; 2013 Jan; 208(1):66.e1-6. PubMed ID: 23122926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between electrohysterogram and internal uterine pressure: a preliminary study.
    Rabotti C; Mischi M; van Laar JO; Aelen P; Oei SG; Bergmans JW
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1661-4. PubMed ID: 17946058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Icelandic 16-electrode electrohysterogram database.
    Alexandersson A; Steingrimsdottir T; Terrien J; Marque C; Karlsson B
    Sci Data; 2015; 2():150017. PubMed ID: 25984349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A validation of electrohysterography for uterine activity monitoring during labour.
    Jacod BC; Graatsma EM; Van Hagen E; Visser GH
    J Matern Fetal Neonatal Med; 2010 Jan; 23(1):17-22. PubMed ID: 19672790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of labor using non-invasive Laplacian EHG recordings.
    Ye-Lin Y; Prats-Boluda G; Alberola-Rubio J; Bueno Barrachina JM; Perales A; Garcia-Casado J
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():7428-31. PubMed ID: 24111462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.