BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 31737744)

  • 1. Quantification of the severity of hypoxic-ischemic brain injury in a neonatal preclinical model using measurements of cytochrome-c-oxidase from a miniature broadband-near-infrared spectroscopy system.
    Kaynezhad P; Mitra S; Bale G; Bauer C; Lingam I; Meehan C; Avdic-Belltheus A; Martinello KA; Bainbridge A; Robertson NJ; Tachtsidis I
    Neurophotonics; 2019 Oct; 6(4):045009. PubMed ID: 31737744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy.
    Bainbridge A; Tachtsidis I; Faulkner SD; Price D; Zhu T; Baer E; Broad KD; Thomas DL; Cady EB; Robertson NJ; Golay X
    Neuroimage; 2014 Nov; 102 Pt 1():173-83. PubMed ID: 23959202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pressure passivity of cerebral mitochondrial metabolism is associated with poor outcome following perinatal hypoxic ischemic brain injury.
    Mitra S; Bale G; Highton D; Gunny R; Uria-Avellanal C; Bainbridge A; Sokolska M; Price D; Huertas-Ceballos A; Kendall GS; Meek J; Tachtsidis I; Robertson NJ
    J Cereb Blood Flow Metab; 2019 Jan; 39(1):118-130. PubMed ID: 28949271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship Between Cerebral Oxygenation and Metabolism During Rewarming in Newborn Infants After Therapeutic Hypothermia Following Hypoxic-Ischemic Brain Injury.
    Mitra S; Bale G; Meek J; Uria-Avellanal C; Robertson NJ; Tachtsidis I
    Adv Exp Med Biol; 2016; 923():245-251. PubMed ID: 27526150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near-infrared spectroscopic quantification of changes in the concentration of oxidized cytochrome c oxidase in the healthy human brain during hypoxemia.
    Tisdall MM; Tachtsidis I; Leung TS; Elwell CE; Smith M
    J Biomed Opt; 2007; 12(2):024002. PubMed ID: 17477717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multimodal Measurements of Brain Tissue Metabolism and Perfusion in a Neonatal Model of Hypoxic-Ischaemic Injury.
    Bale G; Rajaram A; Kewin M; Morrison L; Bainbridge A; Liu L; Anazodo U; Diop M; Lawrence KS; Tachtsidis I
    Adv Exp Med Biol; 2021; 1269():203-208. PubMed ID: 33966218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Broadband NIRS Cerebral Cytochrome-C-Oxidase Response to Anoxia Before and After Hypoxic-Ischaemic Injury in Piglets.
    Bale G; Rajaram A; Kewin M; Morrison L; Bainbridge A; Diop M; St Lawrence K; Tachtsidis I
    Adv Exp Med Biol; 2018; 1072():151-156. PubMed ID: 30178338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interrelationship Between Broadband NIRS Measurements of Cerebral Cytochrome C Oxidase and Systemic Changes Indicates Injury Severity in Neonatal Encephalopathy.
    Bale G; Mitra S; de Roever I; Chan M; Caicedo-Dorado A; Meek J; Robertson N; Tachtsidis I
    Adv Exp Med Biol; 2016; 923():181-186. PubMed ID: 27526141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in Cerebral Oxidative Metabolism during Neonatal Seizures Following Hypoxic-Ischemic Brain Injury.
    Mitra S; Bale G; Mathieson S; Uria-Avellanal C; Meek J; Tachtsidis I; Robertson NJ
    Front Pediatr; 2016; 4():83. PubMed ID: 27559538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early assessment of injury with optical markers in a piglet model of neonatal encephalopathy.
    Harvey-Jones K; Lange F; Verma V; Bale G; Meehan C; Avdic-Belltheus A; Hristova M; Sokolska M; Torrealdea F; Golay X; Parfentyeva V; Durduran T; Bainbridge A; Tachtsidis I; Robertson NJ; Mitra S
    Pediatr Res; 2023 Nov; 94(5):1675-1683. PubMed ID: 37308684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial Distribution of Changes in Oxidised Cytochrome C Oxidase During Visual Stimulation Using Broadband Near Infrared Spectroscopy Imaging.
    Phan P; Highton D; Brigadoi S; Tachtsidis I; Smith M; Elwell CE
    Adv Exp Med Biol; 2016; 923():195-201. PubMed ID: 27526143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Vivo Measurement of Cerebral Mitochondrial Metabolism Using Broadband Near Infrared Spectroscopy Following Neonatal Stroke.
    Mitra S; Bale G; Meek J; Mathieson S; Uria C; Kendall G; Robertson NJ; Tachtsidis I
    Adv Exp Med Biol; 2016; 876():493-500. PubMed ID: 26782250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Melatonin reduces brain injury following inflammation-amplified hypoxia-ischemia in a translational newborn piglet study of neonatal encephalopathy.
    Pang R; Meehan C; Maple G; Norris G; Campbell E; Tucker K; Mintoft A; Torrealdea F; Bainbridge A; Hristova M; Barks J; Golay X; Standing J; Robertson NJ
    J Pineal Res; 2024 May; 76(4):e12962. PubMed ID: 38775315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytochrome c oxidase response to changes in cerebral oxygen delivery in the adult brain shows higher brain-specificity than haemoglobin.
    Kolyva C; Ghosh A; Tachtsidis I; Highton D; Cooper CE; Smith M; Elwell CE
    Neuroimage; 2014 Jan; 85 Pt 1(Pt 1):234-44. PubMed ID: 23707584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between brain tissue haemodynamics, oxygenation and metabolism in the healthy human adult brain during hyperoxia and hypercapnea.
    Tachtsidis I; Tisdall MM; Leung TS; Pritchard C; Cooper CE; Smith M; Elwell CE
    Adv Exp Med Biol; 2009; 645():315-20. PubMed ID: 19227488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supra- and sub-baseline phosphocreatine recovery in developing brain after transient hypoxia-ischaemia: relation to baseline energetics, insult severity and outcome.
    Iwata O; Iwata S; Bainbridge A; De Vita E; Matsuishi T; Cady EB; Robertson NJ
    Brain; 2008 Aug; 131(Pt 8):2220-6. PubMed ID: 18669507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new broadband near-infrared spectroscopy system for in-vivo measurements of cerebral cytochrome-c-oxidase changes in neonatal brain injury.
    Bale G; Mitra S; Meek J; Robertson N; Tachtsidis I
    Biomed Opt Express; 2014 Oct; 5(10):3450-66. PubMed ID: 25360364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton magnetic resonance spectroscopy of the brain during acute hypoxia-ischemia and delayed cerebral energy failure in the newborn piglet.
    Penrice J; Lorek A; Cady EB; Amess PN; Wylezinska M; Cooper CE; D'Souza P; Brown GC; Kirkbride V; Edwards AD; Wyatt JS; Reynolds EO
    Pediatr Res; 1997 Jun; 41(6):795-802. PubMed ID: 9167191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorus magnetic resonance spectroscopy 2 h after perinatal cerebral hypoxia-ischemia prognosticates outcome in the newborn piglet.
    Cady EB; Iwata O; Bainbridge A; Wyatt JS; Robertson NJ
    J Neurochem; 2008 Nov; 107(4):1027-35. PubMed ID: 18786177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox state of near infrared spectroscopy-measured cytochrome aa(3) correlates with delayed cerebral energy failure following perinatal hypoxia-ischaemia in the newborn pig.
    Peeters-Scholte C; van den Tweel E; Groenendaal F; van Bel F
    Exp Brain Res; 2004 May; 156(1):20-6. PubMed ID: 14689136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.