These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 31737850)
1. Structure and Dynamics of Cinnamycin-Lipid Complexes: Mechanisms of Selectivity for Phosphatidylethanolamine Lipids. Vestergaard M; Berglund NA; Hsu PC; Song C; Koldsø H; Schiøtt B; Sansom MSP ACS Omega; 2019 Nov; 4(20):18889-18899. PubMed ID: 31737850 [TBL] [Abstract][Full Text] [Related]
2. Cinnamycin (Ro 09-0198) promotes cell binding and toxicity by inducing transbilayer lipid movement. Makino A; Baba T; Fujimoto K; Iwamoto K; Yano Y; Terada N; Ohno S; Sato SB; Ohta A; Umeda M; Matsuzaki K; Kobayashi T J Biol Chem; 2003 Jan; 278(5):3204-9. PubMed ID: 12446685 [TBL] [Abstract][Full Text] [Related]
3. Specific binding of cinnamycin (Ro 09-0198) to phosphatidylethanolamine. Comparison between micellar and membrane environments. Machaidze G; Seelig J Biochemistry; 2003 Nov; 42(43):12570-6. PubMed ID: 14580203 [TBL] [Abstract][Full Text] [Related]
4. Curvature-dependent recognition of ethanolamine phospholipids by duramycin and cinnamycin. Iwamoto K; Hayakawa T; Murate M; Makino A; Ito K; Fujisawa T; Kobayashi T Biophys J; 2007 Sep; 93(5):1608-19. PubMed ID: 17483159 [TBL] [Abstract][Full Text] [Related]
5. A novel mechanism of immunity controls the onset of cinnamycin biosynthesis in Streptomyces cinnamoneus DSM 40646. O'Rourke S; Widdick D; Bibb M J Ind Microbiol Biotechnol; 2017 May; 44(4-5):563-572. PubMed ID: 27858169 [TBL] [Abstract][Full Text] [Related]
6. Specific binding of Ro 09-0198 (cinnamycin) to phosphatidylethanolamine: a thermodynamic analysis. Machaidze G; Ziegler A; Seelig J Biochemistry; 2002 Feb; 41(6):1965-71. PubMed ID: 11827543 [TBL] [Abstract][Full Text] [Related]
7. Probing phosphoethanolamine-containing lipids in membranes with duramycin/cinnamycin and aegerolysin proteins. Hullin-Matsuda F; Makino A; Murate M; Kobayashi T Biochimie; 2016 Nov; 130():81-90. PubMed ID: 27693589 [TBL] [Abstract][Full Text] [Related]
8. A One-Step Staining Probe for Phosphatidylethanolamine. Hou S; Johnson SE; Zhao M Chembiochem; 2015 Sep; 16(13):1955-1960. PubMed ID: 26224023 [TBL] [Abstract][Full Text] [Related]
9. Curvature Effect of a Phosphatidylethanolamine-Included Membrane on the Behavior of Cinnamycin on the Membrane. Lee SR; Park Y; Park JW J Phys Chem B; 2020 Oct; 124(41):8984-8988. PubMed ID: 32946246 [TBL] [Abstract][Full Text] [Related]
10. Molecular dynamics simulations support a preference of cyclotide kalata B1 for phosphatidylethanolamine phospholipids. Roseli RB; Huang YH; Henriques ST; Kaas Q; Craik DJ Biochim Biophys Acta Biomembr; 2024 Mar; 1866(3):184268. PubMed ID: 38191035 [TBL] [Abstract][Full Text] [Related]
11. Kinetic and thermodynamic studies of cinnamycin specific-adsorption on PE-Included-Membranes using surface plasmon resonance. Lee SR; Park Y; Park JW J Biotechnol; 2020 Aug; 320():77-79. PubMed ID: 32593691 [TBL] [Abstract][Full Text] [Related]
12. Interaction of Human β Defensin Type 3 (hBD-3) with Different PIP2-Containing Membranes, a Molecular Dynamics Simulation Study. Zhang L J Chem Inf Model; 2021 Sep; 61(9):4670-4686. PubMed ID: 34473496 [TBL] [Abstract][Full Text] [Related]
13. Isolation and structure determination of a new lantibiotic cinnamycin B from Actinomadura atramentaria based on genome mining. Kodani S; Komaki H; Ishimura S; Hemmi H; Ohnishi-Kameyama M J Ind Microbiol Biotechnol; 2016 Aug; 43(8):1159-65. PubMed ID: 27255974 [TBL] [Abstract][Full Text] [Related]
14. Effect of NaCl and KCl on phosphatidylcholine and phosphatidylethanolamine lipid membranes: insight from atomic-scale simulations for understanding salt-induced effects in the plasma membrane. Gurtovenko AA; Vattulainen I J Phys Chem B; 2008 Feb; 112(7):1953-62. PubMed ID: 18225878 [TBL] [Abstract][Full Text] [Related]
15. Molecular dynamics investigation of the structural properties of phosphatidylethanolamine lipid bilayers. Suits F; Pitman MC; Feller SE J Chem Phys; 2005 Jun; 122(24):244714. PubMed ID: 16035800 [TBL] [Abstract][Full Text] [Related]
16. Rotational Dynamics of Water at the Phospholipid Bilayer Depending on the Head Groups Studied by Molecular Dynamics Simulations. Higuchi Y; Asano Y; Kuwahara T; Hishida M Langmuir; 2021 May; 37(17):5329-5338. PubMed ID: 33881324 [TBL] [Abstract][Full Text] [Related]
17. Glycolipid membranes through atomistic simulations: effect of glucose and galactose head groups on lipid bilayer properties. Róg T; Vattulainen I; Bunker A; Karttunen M J Phys Chem B; 2007 Aug; 111(34):10146-54. PubMed ID: 17676793 [TBL] [Abstract][Full Text] [Related]
18. Interaction of a peptide model of a hydrophobic transmembrane alpha-helical segment of a membrane protein with phosphatidylethanolamine bilayers: differential scanning calorimetric and Fourier transform infrared spectroscopic studies. Zhang YP; Lewis RN; Hodges RS; McElhaney RN Biophys J; 1995 Mar; 68(3):847-57. PubMed ID: 7756552 [TBL] [Abstract][Full Text] [Related]
19. Lantibiotics as probes for phosphatidylethanolamine. Zhao M Amino Acids; 2011 Nov; 41(5):1071-9. PubMed ID: 21573677 [TBL] [Abstract][Full Text] [Related]
20. Phosphatidylserine and Phosphatidylethanolamine Asymmetry Have a Negligible Effect on the Global Structure, Dynamics, and Interactions of the KRAS Lipid Anchor. Araya MK; Gorfe AA J Phys Chem B; 2022 Jun; 126(24):4491-4500. PubMed ID: 35687481 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]