BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 31738048)

  • 21. Advanced thermoelectrics governed by a single parabolic band: Mg2Si(0.3)Sn(0.7), a canonical example.
    Liu W; Chi H; Sun H; Zhang Q; Yin K; Tang X; Zhang Q; Uher C
    Phys Chem Chem Phys; 2014 Apr; 16(15):6893-7. PubMed ID: 24599570
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Achieving High Thermoelectric Figure of Merit in Polycrystalline SnSe via Introducing Sn Vacancies.
    Wei W; Chang C; Yang T; Liu J; Tang H; Zhang J; Li Y; Xu F; Zhang Z; Li JF; Tang G
    J Am Chem Soc; 2018 Jan; 140(1):499-505. PubMed ID: 29243922
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials.
    Fu C; Bai S; Liu Y; Tang Y; Chen L; Zhao X; Zhu T
    Nat Commun; 2015 Sep; 6():8144. PubMed ID: 26330371
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemically Exfoliated SnSe Nanosheets and Their SnSe/Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Composite Films for Polymer Based Thermoelectric Applications.
    Ju H; Kim J
    ACS Nano; 2016 Jun; 10(6):5730-9. PubMed ID: 27203119
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of Bi-Te
    Park MS; Koo HY; Ha GH; Park YH
    J Nanosci Nanotechnol; 2020 Jan; 20(1):427-432. PubMed ID: 31383189
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced thermoelectric figure of merit in stannite-kuramite solid solutions Cu(2+x)Fe(1-x)SnS(4-y) (x = 0-1) with anisotropy lowering.
    Goto Y; Naito F; Sato R; Yoshiyasu K; Itoh T; Kamihara Y; Matoba M
    Inorg Chem; 2013 Sep; 52(17):9861-6. PubMed ID: 23931285
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancing Thermoelectric Performance of n-Type Hot Deformed Bismuth-Telluride-Based Solid Solutions by Nonstoichiometry-Mediated Intrinsic Point Defects.
    Zhai R; Hu L; Wu H; Xu Z; Zhu TJ; Zhao XB
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28577-28585. PubMed ID: 28776374
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spark Plasma Sintered Bulk Nanocomposites of Bi
    Du B; Lai X; Liu Q; Liu H; Wu J; Liu J; Zhang Z; Pei Y; Zhao H; Jian J
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):31816-31823. PubMed ID: 31436073
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relationship between thermoelectric figure of merit and energy conversion efficiency.
    Kim HS; Liu W; Chen G; Chu CW; Ren Z
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):8205-10. PubMed ID: 26100905
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermoelectric Properties of Cu
    Jung YJ; Kim HS; Won JH; Kim M; Kang M; Jang EY; Binh NV; Kim SI; Moon KS; Roh JW; Nam WH; Koo SM; Oh JM; Cho JY; Shin WH
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329735
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si(1-x)Sn(x) solid solutions.
    Liu W; Tan X; Yin K; Liu H; Tang X; Shi J; Zhang Q; Uher C
    Phys Rev Lett; 2012 Apr; 108(16):166601. PubMed ID: 22680741
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High Thermoelectric Performance of In
    Yin X; Liu JY; Chen L; Wu LM
    Acc Chem Res; 2018 Feb; 51(2):240-247. PubMed ID: 29313668
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals.
    Varghese T; Hollar C; Richardson J; Kempf N; Han C; Gamarachchi P; Estrada D; Mehta RJ; Zhang Y
    Sci Rep; 2016 Sep; 6():33135. PubMed ID: 27615036
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermoelectric transport properties of pristine and Na-doped SnSe(1-x)Te(x) polycrystals.
    Wei TR; Wu CF; Zhang X; Tan Q; Sun L; Pan Y; Li JF
    Phys Chem Chem Phys; 2015 Nov; 17(44):30102-9. PubMed ID: 26496971
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rational design of Bi2Te3 polycrystalline whiskers for thermoelectric applications.
    Han G; Chen ZG; Yang L; Hong M; Drennan J; Zou J
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):989-95. PubMed ID: 25539405
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultrahigh Average Thermoelectric Figure of Merit, Low Lattice Thermal Conductivity and Enhanced Microhardness in Nanostructured (GeTe)
    Samanta M; Roychowdhury S; Ghatak J; Perumal S; Biswas K
    Chemistry; 2017 Jun; 23(31):7438-7443. PubMed ID: 28436062
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced thermal conductivity of epoxy composites filled with silicon carbide nanowires.
    Shen D; Zhan Z; Liu Z; Cao Y; Zhou L; Liu Y; Dai W; Nishimura K; Li C; Lin CT; Jiang N; Yu J
    Sci Rep; 2017 Jun; 7(1):2606. PubMed ID: 28572604
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrostatic Assembly Preparation of High-Toughness Zirconium Diboride-Based Ceramic Composites with Enhanced Thermal Shock Resistance Performance.
    Zhang B; Zhang X; Hong C; Qiu Y; Zhang J; Han J; Hu P
    ACS Appl Mater Interfaces; 2016 May; 8(18):11675-81. PubMed ID: 27031536
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanostructured Composites of Bi
    Güneş E; Gundlach F; Elm MT; Klar PJ; Schlecht S; Wickleder MS; Müller E
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44756-44765. PubMed ID: 29199813
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ambient scalable synthesis of surfactant-free thermoelectric CuAgSe nanoparticles with reversible metallic-n-p conductivity transition.
    Han C; Sun Q; Cheng ZX; Wang JL; Li Z; Lu GQ; Dou SX
    J Am Chem Soc; 2014 Dec; 136(50):17626-33. PubMed ID: 25419613
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.