BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 31738107)

  • 21. Both life-history plasticity and local adaptation will shape range-wide responses to climate warming in the tundra plant Silene acaulis.
    Peterson ML; Doak DF; Morris WF
    Glob Chang Biol; 2018 Apr; 24(4):1614-1625. PubMed ID: 29155464
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In a nutshell, a reciprocal transplant experiment reveals local adaptation and fitness trade-offs in response to urban evolution in an acorn-dwelling ant.
    Martin RA; Chick LD; Garvin ML; Diamond SE
    Evolution; 2021 Apr; 75(4):876-887. PubMed ID: 33586171
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tolerance of subzero winter cold in kudzu (Pueraria montana var. lobata).
    Coiner HA; Hayhoe K; Ziska LH; Van Dorn J; Sage RF
    Oecologia; 2018 Jul; 187(3):839-849. PubMed ID: 29767812
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phenotypic clines, plasticity, and morphological trade-offs in an intertidal snail.
    Trussell GC
    Evolution; 2000 Feb; 54(1):151-66. PubMed ID: 10937192
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combined effects of temperature and interspecific competition on the mortality of the invasive garden ant, Lasius neglectus: A laboratory study.
    Frizzi F; Bartalesi V; Santini G
    J Therm Biol; 2017 Apr; 65():76-81. PubMed ID: 28343579
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Life-history correlations with seasonal cold hardiness in maritime pine.
    Prada E; Climent J; Alía R; Díaz R
    Am J Bot; 2016 Dec; 103(12):2126-2135. PubMed ID: 27999078
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Does social thermal regulation constrain individual thermal tolerance in an ant species?
    Villalta I; Oms CS; Angulo E; Molinas-González CR; Devers S; Cerdá X; Boulay R
    J Anim Ecol; 2020 Sep; 89(9):2063-2076. PubMed ID: 32445419
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cold comfort: metabolic rate and tolerance to low temperatures predict latitudinal distribution in ants.
    Willot Q; Ørsted M; Malte H; Overgaard J
    Proc Biol Sci; 2023 Sep; 290(2006):20230985. PubMed ID: 37670587
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Freezing resistance, safety margins, and survival vary among big sagebrush populations across the western United States.
    Lazarus BE; Germino MJ; Richardson BA
    Am J Bot; 2019 Jul; 106(7):922-934. PubMed ID: 31294835
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mitochondrial function in seasonal acclimatization versus latitudinal adaptation to cold in the lugworm Arenicola marina (L.).
    Sommer AM; Pörtner HO
    Physiol Biochem Zool; 2004; 77(2):174-86. PubMed ID: 15095238
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Is phenotypic plasticity a key mechanism for responding to thermal stress in ants?
    Oms CS; Cerdá X; Boulay R
    Naturwissenschaften; 2017 Jun; 104(5-6):42. PubMed ID: 28470449
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanisms of competitive displacement of native ant fauna by invading Myrmica rubra (Hymenoptera: Formicidae) populations.
    Garnas J; Groden E; Drummond FA
    Environ Entomol; 2014 Dec; 43(6):1496-506. PubMed ID: 25268214
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of climate change on cold hardiness of Douglas-fir (Pseudotsuga menziesii): environmental and genetic considerations.
    Bansal S; St Clair JB; Harrington CA; Gould PJ
    Glob Chang Biol; 2015 Oct; 21(10):3814-26. PubMed ID: 25920066
    [TBL] [Abstract][Full Text] [Related]  

  • 34. C4 bioenergy crops for cool climates, with special emphasis on perennial C4 grasses.
    Sage RF; de Melo Peixoto M; Friesen P; Deen B
    J Exp Bot; 2015 Jul; 66(14):4195-212. PubMed ID: 25873658
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative ecophysiology of cold-tolerance-related traits: assessing range expansion potential for an invasive insect at high latitude.
    Lehmann P; Kaunisto S; Koštál V; Margus A; Zahradníčková H; Lindström L
    Physiol Biochem Zool; 2015; 88(3):254-65. PubMed ID: 25860825
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Insect overwintering in a changing climate.
    Bale JS; Hayward SA
    J Exp Biol; 2010 Mar; 213(6):980-94. PubMed ID: 20190123
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Remarkable insensitivity of acorn ant morphology to temperature decouples the evolution of physiological tolerance from body size under urban heat islands.
    Yilmaz AR; Chick LD; Perez A; Strickler SA; Vaughn S; Martin RA; Diamond SE
    J Therm Biol; 2019 Oct; 85():102426. PubMed ID: 31657738
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Environmental heterogeneity and interspecific interactions influence nest occupancy by key seed-dispersing ants.
    Warren RJ; Giladi I; Bradford MA
    Environ Entomol; 2012 Jun; 41(3):463-8. PubMed ID: 22732603
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The ant, Aphaenogaster picea, benefits from plant elaiosomes when insect prey is scarce.
    Clark RE; King JR
    Environ Entomol; 2012 Dec; 41(6):1405-8. PubMed ID: 23321086
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermal tolerance in a south-east African population of the tsetse fly Glossina pallidipes (Diptera, Glossinidae): implications for forecasting climate change impacts.
    Terblanche JS; Clusella-Trullas S; Deere JA; Chown SL
    J Insect Physiol; 2008 Jan; 54(1):114-27. PubMed ID: 17889900
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.