These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 31738107)

  • 41. Urban physiology: city ants possess high heat tolerance.
    Angilletta MJ; Wilson RS; Niehaus AC; Sears MW; Navas CA; Ribeiro PL
    PLoS One; 2007 Feb; 2(2):e258. PubMed ID: 17327918
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microhabitat and body size effects on heat tolerance: implications for responses to climate change (army ants: Formicidae, Ecitoninae).
    Baudier KM; Mudd AE; Erickson SC; O'Donnell S
    J Anim Ecol; 2015 Sep; 84(5):1322-30. PubMed ID: 26072696
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Where do adaptive shifts occur during invasion? A multidisciplinary approach to unravelling cold adaptation in a tropical ant species invading the Mediterranean area.
    Rey O; Estoup A; Vonshak M; Loiseau A; Blanchet S; Calcaterra L; Chifflet L; Rossi JP; Kergoat GJ; Foucaud J; Orivel J; Leponce M; Schultz T; Facon B
    Ecol Lett; 2012 Nov; 15(11):1266-1275. PubMed ID: 22906215
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The climatic drivers of primary Picea forest growth along the Carpathian arc are changing under rising temperatures.
    Schurman JS; Babst F; Björklund J; Rydval M; Bače R; Čada V; Janda P; Mikolas M; Saulnier M; Trotsiuk V; Svoboda M
    Glob Chang Biol; 2019 Sep; 25(9):3136-3150. PubMed ID: 31166643
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Responses of Picea mariana to elevated CO2 concentration during growth, cold hardening and dehardening: phenology, cold tolerance, photosynthesis and growth.
    Bigras FJ; Bertrand A
    Tree Physiol; 2006 Jul; 26(7):875-88. PubMed ID: 16585033
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Subterranean ants: the case of Aphaenogaster cardenai (Hymenoptera: Formicidae).
    Ortuño VM; Gilgado JD; Tinaut A
    J Insect Sci; 2014; 14():. PubMed ID: 25502024
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Intercolony aggression within and among local populations of the invasive ant, Myrmica rubra (Hymenoptera: Formicidae), in coastal Maine.
    Garnas JR; Drummond FA; Groden E
    Environ Entomol; 2007 Feb; 36(1):105-13. PubMed ID: 17349123
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dissecting chill coma recovery as a measure of cold resistance: evidence for a biphasic response in Drosophila melanogaster.
    Macdonald SS; Rako L; Batterham P; Hoffmann AA
    J Insect Physiol; 2004 Aug; 50(8):695-700. PubMed ID: 15288203
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interpopulational variation in recovery time from chill coma along a geographic gradient: a study in the common woodlouse, Porcellio laevis.
    Castañeda LE; Lardies MA; Bozinovic F
    J Insect Physiol; 2005 Dec; 51(12):1346-51. PubMed ID: 16197957
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Low cold tolerance of the invasive lizard Eutropis multifasciata constrains its potential elevation distribution in Taiwan.
    Lin TE; Chen TY; Wei HL; Richard R; Huang SP
    J Therm Biol; 2019 May; 82():115-122. PubMed ID: 31128639
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Larval tolerance, gene flow, and the northern geographic range limit of fiddler crabs.
    Sanford E; Holzman SB; Haney RA; Rand DM; Bertness MD
    Ecology; 2006 Nov; 87(11):2882-94. PubMed ID: 17168032
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Interpopulational variation in the cold tolerance of a broadly distributed marine copepod.
    Wallace GT; Kim TL; Neufeld CJ
    Conserv Physiol; 2014; 2(1):cou041. PubMed ID: 27293662
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Rapid evolution of phenology during range expansion with recent climate change.
    Lustenhouwer N; Wilschut RA; Williams JL; van der Putten WH; Levine JM
    Glob Chang Biol; 2018 Feb; 24(2):e534-e544. PubMed ID: 29044944
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A resurrection study reveals limited evolution of thermal performance in response to recent climate change across the geographic range of the scarlet monkeyflower.
    Wooliver R; Tittes SB; Sheth SN
    Evolution; 2020 Aug; 74(8):1699-1710. PubMed ID: 32537737
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Seasonal cues induce phenotypic plasticity of Drosophila suzukii to enhance winter survival.
    Shearer PW; West JD; Walton VM; Brown PH; Svetec N; Chiu JC
    BMC Ecol; 2016 Mar; 16():11. PubMed ID: 27001084
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Myo-inositol as a main metabolite in overwintering flies: seasonal metabolomic profiles and cold stress tolerance in a northern drosophilid fly.
    Vesala L; Salminen TS; Koštál V; Zahradníčková H; Hoikkala A
    J Exp Biol; 2012 Aug; 215(Pt 16):2891-7. PubMed ID: 22837463
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Thermal adaptation generates a diversity of thermal limits in a rainforest ant community.
    Kaspari M; Clay NA; Lucas J; Yanoviak SP; Kay A
    Glob Chang Biol; 2015 Mar; 21(3):1092-102. PubMed ID: 25242246
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Upper lethal temperatures in three cold-tolerant insects are higher in winter than in summer.
    Vu HM; Duman JG
    J Exp Biol; 2017 Aug; 220(Pt 15):2726-2732. PubMed ID: 28768748
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Critical thermal minima, their spatial and temporal variation and response to hardening in Myrmica ants.
    Maysov A; Kipyatkov VE
    Cryo Letters; 2009; 30(1):29-40. PubMed ID: 19274309
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biotic and abiotic controls of Argentine ant invasion success at local and landscape scales.
    Menke SB; Fisher RN; Jetz W; Holway DA
    Ecology; 2007 Dec; 88(12):3164-73. PubMed ID: 18229850
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.