BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 31738230)

  • 1. Wnt signaling contributes to withdrawal symptoms from opioid receptor activation induced by morphine exposure or chronic inflammation.
    Wu M; Li Z; Liang L; Ma P; Cui D; Chen P; Wu G; Song XJ
    Pain; 2020 Mar; 161(3):532-544. PubMed ID: 31738230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sphingosine-1-phosphate receptor subtype 1 activation in the central nervous system contributes to morphine withdrawal in rodents.
    Doyle TM; Hutchinson MR; Braden K; Janes K; Staikopoulos V; Chen Z; Neumann WL; Spiegel S; Salvemini D
    J Neuroinflammation; 2020 Oct; 17(1):314. PubMed ID: 33092620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Naloxone rapidly evokes endogenous kappa opioid receptor-mediated hyperalgesia in naïve mice pretreated briefly with GM1 ganglioside or in chronic morphine-dependent mice.
    Crain SM; Shen KF
    Brain Res; 2007 Sep; 1167():31-41. PubMed ID: 17692296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wnt/Ryk signaling contributes to neuropathic pain by regulating sensory neuron excitability and spinal synaptic plasticity in rats.
    Liu S; Liu YP; Huang ZJ; Zhang YK; Song AA; Ma PC; Song XJ
    Pain; 2015 Dec; 156(12):2572-2584. PubMed ID: 26407042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spinal modulation of calcitonin gene-related peptide by endocannabinoids in the development of opioid physical dependence.
    Trang T; Ma W; Chabot JG; Quirion R; Jhamandas K
    Pain; 2006 Dec; 126(1-3):256-71. PubMed ID: 16935424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is withdrawal hyperalgesia in morphine-dependent mice a direct effect of a low concentration of the residual drug?
    Rubovitch V; Pick CG; Sarne Y
    Addict Biol; 2009 Sep; 14(4):438-46. PubMed ID: 19489750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mu-Opioid Receptors Expressed in Glutamatergic Neurons are Essential for Morphine Withdrawal.
    Zhang XY; Li Q; Dong Y; Yan W; Song K; Lin YQ; Sun YG
    Neurosci Bull; 2020 Oct; 36(10):1095-1106. PubMed ID: 32451910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The contribution of supraspinal, peripheral and intrinsic spinal circuits to the pattern and magnitude of Fos-like immunoreactivity in the lumbar spinal cord of the rat withdrawing from morphine.
    Rohde DS; McKay WR; Chang DS; Abbadie C; Basbaum AI
    Neuroscience; 1997 Sep; 80(2):599-612. PubMed ID: 9284361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Absence of quasi-morphine withdrawal syndrome in adenosine A2A receptor knockout mice.
    Bilbao A; Cippitelli A; Martín AB; Granado N; Ortiz O; Bezard E; Chen JF; Navarro M; Rodríguez de Fonseca F; Moratalla R
    Psychopharmacology (Berl); 2006 Apr; 185(2):160-8. PubMed ID: 16470403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methocinnamox Produces Long-Lasting Antagonism of the Behavioral Effects of
    Gerak LR; Minervini V; Latham E; Ghodrati S; Lillis KV; Wooden J; Disney A; Husbands SM; France CP
    J Pharmacol Exp Ther; 2019 Nov; 371(2):507-516. PubMed ID: 31439807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decrease of inhibitory synaptic currents of locus coeruleus neurons via orexin type 1 receptors in the context of naloxone-induced morphine withdrawal.
    Davoudi M; Azizi H; Mirnajafi-Zadeh J; Semnanian S
    J Physiol Sci; 2019 Mar; 69(2):281-293. PubMed ID: 30406600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo and in vitro attenuation of naloxone-precipitated experimental opioid withdrawal syndrome by insulin and selective KATP channel modulator.
    Singh P; Sharma B; Gupta S; Sharma BM
    Psychopharmacology (Berl); 2015 Jan; 232(2):465-75. PubMed ID: 25059539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enkephalin release promotes homeostatic increases in constitutively active mu opioid receptors during morphine withdrawal.
    Shoblock JR; Maidment NT
    Neuroscience; 2007 Nov; 149(3):642-9. PubMed ID: 17905519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Naloxone-precipitated morphine withdrawal behavior and brain IL-1β expression: comparison of different mouse strains.
    Liu L; Coller JK; Watkins LR; Somogyi AA; Hutchinson MR
    Brain Behav Immun; 2011 Aug; 25(6):1223-32. PubMed ID: 21447380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Naloxone-precipitated withdrawal enhances ERK phosphorylation in prefrontal association cortex and accumbens nucleus of morphine-dependent mice.
    Li T; Hou Y; Cao W; Yan CX; Chen T; Li SB
    Neurosci Lett; 2010 Jan; 468(3):348-52. PubMed ID: 19922770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spinal matrix metalloproteinase-9 contributes to physical dependence on morphine in mice.
    Liu WT; Han Y; Liu YP; Song AA; Barnes B; Song XJ
    J Neurosci; 2010 Jun; 30(22):7613-23. PubMed ID: 20519536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Withdrawal from dependence upon butorphanol uniquely increases kappa(1)-opioid receptor binding in the rat brain.
    Fan LW; Tanaka S; Tien LT; Ma T; Rockhold RW; Ho IK
    Brain Res Bull; 2002 Jun; 58(2):149-60. PubMed ID: 12127012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss of Sfrp2 contributes to the neurological disorders related with morphine withdrawal via Wnt/β-catenin signaling.
    Wang JC; Li YQ; Feng DY; Zhou X; Yan FQ; Li Y; Gao L; Li LH
    Behav Brain Res; 2019 Feb; 359():609-618. PubMed ID: 30291843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of serotonin 5-HT(2C) receptor suppresses behavioral sensitization and naloxone-precipitated withdrawal symptoms in morphine-dependent mice.
    Zhang G; Wu X; Zhang YM; Liu H; Jiang Q; Pang G; Tao X; Dong L; Stackman RW
    Neuropharmacology; 2016 Feb; 101():246-54. PubMed ID: 26432939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Naloxone-precipitated withdrawal jumping in 11 inbred mouse strains: evidence for common genetic mechanisms in acute and chronic morphine physical dependence.
    Kest B; Palmese CA; Hopkins E; Adler M; Juni A; Mogil JS
    Neuroscience; 2002; 115(2):463-9. PubMed ID: 12421612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.