BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 31738432)

  • 21. Chloroplast Proteases: Updates on Proteolysis within and across Suborganellar Compartments.
    Nishimura K; Kato Y; Sakamoto W
    Plant Physiol; 2016 Aug; 171(4):2280-93. PubMed ID: 27288365
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular Mechanism of the Specificity of Protein Import into Chloroplasts and Mitochondria in Plant Cells.
    Lee DW; Lee S; Lee J; Woo S; Razzak MA; Vitale A; Hwang I
    Mol Plant; 2019 Jul; 12(7):951-966. PubMed ID: 30890495
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A functionally divergent hydrogenosomal peptidase with protomitochondrial ancestry.
    Brown MT; Goldstone HM; Bastida-Corcuera F; Delgadillo-Correa MG; McArthur AG; Johnson PJ
    Mol Microbiol; 2007 Jun; 64(5):1154-63. PubMed ID: 17542912
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biogenesis of mitochondrial carrier proteins: molecular mechanisms of import into mitochondria.
    Ferramosca A; Zara V
    Biochim Biophys Acta; 2013 Mar; 1833(3):494-502. PubMed ID: 23201437
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of cleavage sites and substrate proteins for two mitochondrial intermediate peptidases in Arabidopsis thaliana.
    Carrie C; Venne AS; Zahedi RP; Soll J
    J Exp Bot; 2015 May; 66(9):2691-708. PubMed ID: 25732537
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cross-Species Functional Conservation and Possible Origin of the N-Terminal Specificity Domain of Mitochondrial Presequences.
    Lee DW; Lee S; Min CK; Park C; Kim JM; Hwang CS; Park SK; Cho NH; Hwang I
    Front Plant Sci; 2020; 11():64. PubMed ID: 32117399
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dual targeting of a processing peptidase into both endosymbiotic organelles mediated by a transport signal of unusual architecture.
    Baudisch B; Klösgen RB
    Mol Plant; 2012 Mar; 5(2):494-503. PubMed ID: 22131051
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Amyloid-β peptide induces mitochondrial dysfunction by inhibition of preprotein maturation.
    Mossmann D; Vögtle FN; Taskin AA; Teixeira PF; Ring J; Burkhart JM; Burger N; Pinho CM; Tadic J; Loreth D; Graff C; Metzger F; Sickmann A; Kretz O; Wiedemann N; Zahedi RP; Madeo F; Glaser E; Meisinger C
    Cell Metab; 2014 Oct; 20(4):662-9. PubMed ID: 25176146
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mitochondrial protein import as a quality control sensor.
    Maity S; Chakrabarti O
    Biol Cell; 2021 Sep; 113(9):375-400. PubMed ID: 33870508
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oxidative stress and mitochondrial protein quality control in aging.
    Lionaki E; Tavernarakis N
    J Proteomics; 2013 Oct; 92():181-94. PubMed ID: 23563202
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Divergent evolution of the M3A family of metallopeptidases in plants.
    Kmiec B; Teixeira PF; Murcha MW; Glaser E
    Physiol Plant; 2016 Jul; 157(3):380-8. PubMed ID: 27100569
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiple pathways for sorting mitochondrial precursor proteins.
    Bolender N; Sickmann A; Wagner R; Meisinger C; Pfanner N
    EMBO Rep; 2008 Jan; 9(1):42-9. PubMed ID: 18174896
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functions of outer membrane receptors in mitochondrial protein import.
    Endo T; Kohda D
    Biochim Biophys Acta; 2002 Sep; 1592(1):3-14. PubMed ID: 12191763
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Plastid and Mitochondrial Peptidase Network in
    Majsec K; Bhuiyan NH; Sun Q; Kumari S; Kumar V; Ware D; van Wijk KJ
    Plant Cell; 2017 Nov; 29(11):2687-2710. PubMed ID: 28947489
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrophobic residues within the predicted N-terminal amphiphilic alpha-helix of a plant mitochondrial targeting presequence play a major role in in vivo import.
    Duby G; Oufattole M; Boutry M
    Plant J; 2001 Sep; 27(6):539-49. PubMed ID: 11576437
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The plant mitochondrial protein import apparatus - the differences make it interesting.
    Murcha MW; Wang Y; Narsai R; Whelan J
    Biochim Biophys Acta; 2014 Apr; 1840(4):1233-45. PubMed ID: 24080405
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proteasomal degradation induced by DPP9-mediated processing competes with mitochondrial protein import.
    Finger Y; Habich M; Gerlich S; Urbanczyk S; van de Logt E; Koch J; Schu L; Lapacz KJ; Ali M; Petrungaro C; Salscheider SL; Pichlo C; Baumann U; Mielenz D; Dengjel J; Brachvogel B; Hofmann K; Riemer J
    EMBO J; 2020 Oct; 39(19):e103889. PubMed ID: 32815200
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plant Mitochondrial Inner Membrane Protein Insertion.
    Kolli R; Soll J; Carrie C
    Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29495281
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Global analysis of the mitochondrial N-proteome identifies a processing peptidase critical for protein stability.
    Vögtle FN; Wortelkamp S; Zahedi RP; Becker D; Leidhold C; Gevaert K; Kellermann J; Voos W; Sickmann A; Pfanner N; Meisinger C
    Cell; 2009 Oct; 139(2):428-39. PubMed ID: 19837041
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Isolation and identification of a novel mitochondrial metalloprotease (PreP) that degrades targeting presequences in plants.
    Stahl A; Moberg P; Ytterberg J; Panfilov O; Brockenhuus Von Lowenhielm H; Nilsson F; Glaser E
    J Biol Chem; 2002 Nov; 277(44):41931-9. PubMed ID: 12138166
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.