These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 31738547)

  • 1. Random Phase Approximation Applied to Many-Body Noncovalent Systems.
    Modrzejewski M; Yourdkhani S; Klimeš J
    J Chem Theory Comput; 2020 Jan; 16(1):427-442. PubMed ID: 31738547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Random-Phase Approximation in Many-Body Noncovalent Systems: Methane in a Dodecahedral Water Cage.
    Modrzejewski M; Yourdkhani S; Śmiga S; Klimeš J
    J Chem Theory Comput; 2021 Feb; 17(2):804-817. PubMed ID: 33445879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of random phase approximation and second-order Møller-Plesset perturbation theory for many-body interactions in solid ethane, ethylene, and acetylene.
    Pham KN; Modrzejewski M; Klimeš J
    J Chem Phys; 2023 Apr; 158(14):144119. PubMed ID: 37061498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Description of noncovalent interactions involving π-system with high precision: An assessment of RPA, MP2, and DFT-D methods.
    Su H; Wang H; Wang H; Lu Y; Zhu Z
    J Comput Chem; 2019 Jun; 40(17):1643-1651. PubMed ID: 30937960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Random phase approximation with second-order screened exchange for current-carrying atomic states.
    Zhu W; Zhang L; Trickey SB
    J Chem Phys; 2016 Dec; 145(22):224106. PubMed ID: 27984916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Range-Separated Density-Functional Theory in Combination with the Random Phase Approximation: An Accuracy Benchmark.
    Kreppel A; Graf D; Laqua H; Ochsenfeld C
    J Chem Theory Comput; 2020 May; 16(5):2985-2994. PubMed ID: 32329618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Van der Waals interactions between hydrocarbon molecules and zeolites: periodic calculations at different levels of theory, from density functional theory to the random phase approximation and Møller-Plesset perturbation theory.
    Göltl F; Grüneis A; Bučko T; Hafner J
    J Chem Phys; 2012 Sep; 137(11):114111. PubMed ID: 22998253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid functionals including random phase approximation correlation and second-order screened exchange.
    Paier J; Janesko BG; Henderson TM; Scuseria GE; Grüneis A; Kresse G
    J Chem Phys; 2010 Mar; 132(9):094103. PubMed ID: 20210385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Communication: Random phase approximation renormalized many-body perturbation theory.
    Bates JE; Furche F
    J Chem Phys; 2013 Nov; 139(17):171103. PubMed ID: 24206280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An assessment of the random-phase approximation functional and characteristics analysis for noncovalent cation-π interactions.
    Su H; Wu Q; Wang H; Wang H
    Phys Chem Chem Phys; 2017 Oct; 19(38):26014-26021. PubMed ID: 28920597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beyond the random-phase approximation for the electron correlation energy: the importance of single excitations.
    Ren X; Tkatchenko A; Rinke P; Scheffler M
    Phys Rev Lett; 2011 Apr; 106(15):153003. PubMed ID: 21568551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast computation of molecular random phase approximation correlation energies using resolution of the identity and imaginary frequency integration.
    Eshuis H; Yarkony J; Furche F
    J Chem Phys; 2010 Jun; 132(23):234114. PubMed ID: 20572696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate and Efficient Parallel Implementation of an Effective Linear-Scaling Direct Random Phase Approximation Method.
    Graf D; Beuerle M; Schurkus HF; Luenser A; Savasci G; Ochsenfeld C
    J Chem Theory Comput; 2018 May; 14(5):2505-2515. PubMed ID: 29658715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Interaction-Corrected Random Phase Approximation.
    Ruan S; Ren X; Gould T; Ruzsinszky A
    J Chem Theory Comput; 2021 Apr; 17(4):2107-2115. PubMed ID: 33689324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculations on noncovalent interactions and databases of benchmark interaction energies.
    Hobza P
    Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-range-corrected hybrid density functionals including random phase approximation correlation: application to noncovalent interactions.
    Janesko BG; Henderson TM; Scuseria GE
    J Chem Phys; 2009 Jul; 131(3):034110. PubMed ID: 19624184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A range-separated generalized Kohn-Sham method including a long-range nonlocal random phase approximation correlation potential.
    Graf D; Ochsenfeld C
    J Chem Phys; 2020 Dec; 153(24):244118. PubMed ID: 33380112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytical First-Order Molecular Properties and Forces within the Adiabatic Connection Random Phase Approximation.
    Burow AM; Bates JE; Furche F; Eshuis H
    J Chem Theory Comput; 2014 Jan; 10(1):180-94. PubMed ID: 26579901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Random-Phase Approximation Methods.
    Chen GP; Voora VK; Agee MM; Balasubramani SG; Furche F
    Annu Rev Phys Chem; 2017 May; 68():421-445. PubMed ID: 28301757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.