BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 31738940)

  • 1. Lack of interlimb transfer following visuomotor adaptation in a person with congenital mirror movements.
    Bao S; Morgan AM; Lei Y; Wang J
    Neuropsychologia; 2020 Jan; 136():107265. PubMed ID: 31738940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facilitative effects of use-dependent learning on interlimb transfer of visuomotor adaptation in a person with congenital mirror movements.
    Jo Y; Javidialsaadi M; Wang J
    Hum Mov Sci; 2022 Aug; 84():102973. PubMed ID: 35763973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lack of interlimb transfer following visuomotor adaptation in a person with congenital mirror movements despite the awareness of the visuomotor perturbation.
    Javidialsaadi M; Wang J
    Brain Cogn; 2021 Feb; 147():105653. PubMed ID: 33221664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interlimb transfer of visuomotor rotations: independence of direction and final position information.
    Sainburg RL; Wang J
    Exp Brain Res; 2002 Aug; 145(4):437-47. PubMed ID: 12172655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ipsilateral corticospinal projections do not predict congenital mirror movements: a case report.
    Verstynen T; Spencer R; Stinear CM; Konkle T; Diedrichsen J; Byblow WD; Ivry RB
    Neuropsychologia; 2007 Mar; 45(4):844-52. PubMed ID: 17023008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interlimb transfer of visuomotor rotations depends on handedness.
    Wang J; Sainburg RL
    Exp Brain Res; 2006 Nov; 175(2):223-30. PubMed ID: 16733695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generalization of visuomotor learning between bilateral and unilateral conditions.
    Wang J; Sainburg RL
    J Neurophysiol; 2009 Nov; 102(5):2790-9. PubMed ID: 19759325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experiencing a reaching task passively with one arm while adapting to a visuomotor rotation with the other can lead to substantial transfer of motor learning across the arms.
    Bao S; Lei Y; Wang J
    Neurosci Lett; 2017 Jan; 638():109-113. PubMed ID: 27988346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prolonged training does not result in a greater extent of interlimb transfer following visuomotor adaptation.
    Lei Y; Wang J
    Brain Cogn; 2014 Nov; 91():95-9. PubMed ID: 25282328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visuomotor learning generalizes between bilateral and unilateral conditions despite varying degrees of bilateral interference.
    Wang J; Mordkoff JT; Sainburg RL
    J Neurophysiol; 2010 Dec; 104(6):2913-21. PubMed ID: 20881203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing Generalization of Visuomotor Adaptation by Inducing Use-dependent Learning.
    Lei Y; Bao S; Perez MA; Wang J
    Neuroscience; 2017 Dec; 366():184-195. PubMed ID: 29031601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms underlying interlimb transfer of visuomotor rotations.
    Wang J; Sainburg RL
    Exp Brain Res; 2003 Apr; 149(4):520-6. PubMed ID: 12677333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulating the cerebellum affects visuomotor adaptation but not intermanual transfer of learning.
    Block H; Celnik P
    Cerebellum; 2013 Dec; 12(6):781-93. PubMed ID: 23625383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Individual movement features during prism adaptation correlate with after-effects and interlimb transfer.
    Renault AG; Lefumat H; Miall RC; Bringoux L; Bourdin C; Vercher JL; Sarlegna FR
    Psychol Res; 2020 Jun; 84(4):866-880. PubMed ID: 30406829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aging reduces asymmetries in interlimb transfer of visuomotor adaptation.
    Wang J; Przybyla A; Wuebbenhorst K; Haaland KY; Sainburg RL
    Exp Brain Res; 2011 Apr; 210(2):283-90. PubMed ID: 21424842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performing a reaching task with one arm while adapting to a visuomotor rotation with the other can lead to complete transfer of motor learning across the arms.
    Wang J; Lei Y; Binder JR
    J Neurophysiol; 2015 Apr; 113(7):2302-8. PubMed ID: 25632082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The extent of interlimb transfer following adaptation to a novel visuomotor condition does not depend on awareness of the condition.
    Wang J; Joshi M; Lei Y
    J Neurophysiol; 2011 Jul; 106(1):259-64. PubMed ID: 21562196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interlimb differences in visuomotor and dynamic adaptation during targeted reaching in children.
    Bagesteiro LB; Lima KO; Wang J
    Hum Mov Sci; 2021 Jun; 77():102788. PubMed ID: 33798930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Limitations in interlimb transfer of visuomotor rotations.
    Wang J; Sainburg RL
    Exp Brain Res; 2004 Mar; 155(1):1-8. PubMed ID: 15064878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RAD51 deficiency disrupts the corticospinal lateralization of motor control.
    Gallea C; Popa T; Hubsch C; Valabregue R; Brochard V; Kundu P; Schmitt B; Bardinet E; Bertasi E; Flamand-Roze C; Alexandre N; Delmaire C; Méneret A; Depienne C; Poupon C; Hertz-Pannier L; Cincotta M; Vidailhet M; Lehericy S; Meunier S; Roze E
    Brain; 2013 Nov; 136(Pt 11):3333-46. PubMed ID: 24056534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.