These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 31738940)

  • 21. Neurophysiology of unimanual motor control and mirror movements.
    Cincotta M; Ziemann U
    Clin Neurophysiol; 2008 Apr; 119(4):744-62. PubMed ID: 18187362
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interlimb transfer and generalisation of learning in the context of persistent failure to accomplish a visuomotor task.
    Bolton DAE; Buick AR; Carroll TJ; Carson RG
    Exp Brain Res; 2019 Apr; 237(4):1077-1092. PubMed ID: 30758515
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New visuomotor maps are immediately available to the opposite limb.
    Carroll TJ; Poh E; de Rugy A
    J Neurophysiol; 2014 Jun; 111(11):2232-43. PubMed ID: 24598522
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bilateral motor cortex output with intended unimanual contraction in congenital mirror movements.
    Cincotta M; Borgheresi A; Boffi P; Vigliano P; Ragazzoni A; Zaccara G; Ziemann U
    Neurology; 2002 Apr; 58(8):1290-3. PubMed ID: 11971104
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effects of acute exercise on visuomotor adaptation, learning, and inter-limb transfer.
    Neva JL; Ma JA; Orsholits D; Boisgontier MP; Boyd LA
    Exp Brain Res; 2019 Apr; 237(4):1109-1127. PubMed ID: 30778618
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interlimb transfer of novel inertial dynamics is asymmetrical.
    Wang J; Sainburg RL
    J Neurophysiol; 2004 Jul; 92(1):349-60. PubMed ID: 15028745
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Substantial generalization of sensorimotor learning from bilateral to unilateral movement conditions.
    Wang J; Lei Y; Xiong K; Marek K
    PLoS One; 2013; 8(3):e58495. PubMed ID: 23505519
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A positive association between active lifestyle and hemispheric lateralization for motor control and learning in older adults.
    Wang J; D'Amato A; Bambrough J; Swartz AM; Miller NE
    Behav Brain Res; 2016 Nov; 314():38-44. PubMed ID: 27481694
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Whole body adaptation to novel dynamics does not transfer between effectors.
    Pienciak-Siewert A; Ahmed AA
    J Neurophysiol; 2021 Oct; 126(4):1345-1360. PubMed ID: 34433001
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interference between competing motor memories developed through learning with different limbs.
    Kumar N; Kumar A; Sonane B; Mutha PK
    J Neurophysiol; 2018 Sep; 120(3):1061-1073. PubMed ID: 29790834
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Brain functional differences in visuo-motor task adaptation between dominant and non-dominant hand training.
    Kirby KM; Pillai SR; Carmichael OT; Van Gemmert AWA
    Exp Brain Res; 2019 Dec; 237(12):3109-3121. PubMed ID: 31542802
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hand motor cortex activation in a patient with congenital mirror movements: a study of the silent period following focal transcranial magnetic stimulation.
    Cincotta M; Lori S; Gangemi PF; Barontini F; Ragazzoni A
    Electroencephalogr Clin Neurophysiol; 1996 Jun; 101(3):240-6. PubMed ID: 8647037
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intermanual transfer and proprioceptive recalibration following training with translated visual feedback of the hand.
    Mostafa AA; Salomonczyk D; Cressman EK; Henriques DY
    Exp Brain Res; 2014 Jun; 232(6):1639-51. PubMed ID: 24468724
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The supplementary motor area modulates interhemispheric interactions during movement preparation.
    Welniarz Q; Gallea C; Lamy JC; Méneret A; Popa T; Valabregue R; Béranger B; Brochard V; Flamand-Roze C; Trouillard O; Bonnet C; Brüggemann N; Bitoun P; Degos B; Hubsch C; Hainque E; Golmard JL; Vidailhet M; Lehéricy S; Dusart I; Meunier S; Roze E
    Hum Brain Mapp; 2019 May; 40(7):2125-2142. PubMed ID: 30653778
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interpreting ambiguous visual information in motor learning.
    Dionne JK; Henriques DY
    J Vis; 2008 Nov; 8(15):2.1-10. PubMed ID: 19146286
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neural function in DCC mutation carriers with and without mirror movements.
    Vosberg DE; Beaulé V; Torres-Berrío A; Cooke D; Chalupa A; Jaworska N; Cox SML; Larcher K; Zhang Y; Allard D; Durand F; Dagher A; Benkelfat C; Srour M; Tampieri D; La Piana R; Joober R; Lepore F; Rouleau G; Pascual-Leone A; Fox MD; Flores C; Leyton M; Théoret H
    Ann Neurol; 2019 Mar; 85(3):433-442. PubMed ID: 30666715
    [TBL] [Abstract][Full Text] [Related]  

  • 37. No effects of cerebellar transcranial direct current stimulation on force field and visuomotor reach adaptation in young and healthy subjects.
    Mamlins A; Hulst T; Donchin O; Timmann D; Claassen J
    J Neurophysiol; 2019 Jun; 121(6):2112-2125. PubMed ID: 30943093
    [TBL] [Abstract][Full Text] [Related]  

  • 38. To transfer or not to transfer? Kinematics and laterality quotient predict interlimb transfer of motor learning.
    Lefumat HZ; Vercher JL; Miall RC; Cole J; Buloup F; Bringoux L; Bourdin C; Sarlegna FR
    J Neurophysiol; 2015 Nov; 114(5):2764-74. PubMed ID: 26334018
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neural correlates associated with intermanual transfer of sensorimotor adaptation.
    Anguera JA; Russell CA; Noll DC; Seidler RD
    Brain Res; 2007 Dec; 1185():136-51. PubMed ID: 17996854
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Motor adaptation to Coriolis force perturbations of reaching movements: endpoint but not trajectory adaptation transfers to the nonexposed arm.
    Dizio P; Lackner JR
    J Neurophysiol; 1995 Oct; 74(4):1787-92. PubMed ID: 8989414
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.