BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 31739021)

  • 1. Enhancement of microbial lipase activity via immobilization over sodium titanate nanotubes for fatty acid methyl esters production.
    Nady D; Zaki AH; Raslan M; Hozayen W
    Int J Biol Macromol; 2020 Mar; 146():1169-1179. PubMed ID: 31739021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Different TiO
    El-Kady K; Raslan M; Zaki AH
    ACS Omega; 2021 Dec; 6(51):35484-35493. PubMed ID: 34984280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of graphene nanoplatelet-titanate nanotube composite and its advantages over the two single components as biosensor immobilization materials.
    Liu X; Zhang J; Yan R; Zhang Q; Liu X
    Biosens Bioelectron; 2014 Jan; 51():76-81. PubMed ID: 23939473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodiesel production using lipase immobilized on epoxychloropropane-modified Fe3O4 sub-microspheres.
    Zhang Q; Zheng Z; Liu C; Liu C; Tan T
    Colloids Surf B Biointerfaces; 2016 Apr; 140():446-451. PubMed ID: 26803008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilization of Candida antarctica Lipase B on Magnetic Poly(Urea-Urethane) Nanoparticles.
    Chiaradia V; Soares NS; Valério A; de Oliveira D; Araújo PH; Sayer C
    Appl Biochem Biotechnol; 2016 Oct; 180(3):558-575. PubMed ID: 27184256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sodium titanate nanotubes for efficient transesterification of oils into biodiesel.
    Zaki AH; Naeim AA; El-Dek SI
    Environ Sci Pollut Res Int; 2019 Dec; 26(36):36388-36400. PubMed ID: 31724127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermo-alkali-stable lipase from a novel
    El-Ghonemy DH; Ali TH; Hassanein NM; Abdellah EM; Fadel M; Awad GEA; Abdou DAM
    Prep Biochem Biotechnol; 2021; 51(3):225-240. PubMed ID: 32808876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Entrapment of surfactant modified lipase within zeolitic imidazolate framework (ZIF)-8.
    Vaidya LB; Nadar SS; Rathod VK
    Int J Biol Macromol; 2020 Mar; 146():678-686. PubMed ID: 31870874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A robust nanobiocatalyst based on high performance lipase immobilized to novel synthesised poly(o-toluidine) functionalized magnetic nanocomposite: Sterling stability and application.
    Asmat S; Husain Q
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():25-36. PubMed ID: 30889698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Luffa cylindrica sponges as a thermally and chemically stable support for Aspergillus niger lipase.
    Zdarta J; Jesionowski T
    Biotechnol Prog; 2016 May; 32(3):657-65. PubMed ID: 26918791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and characterization of lactose fatty acid ester biosurfactants using free and immobilized lipases in organic solvents.
    Enayati M; Gong Y; Goddard JM; Abbaspourrad A
    Food Chem; 2018 Nov; 266():508-513. PubMed ID: 30381219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of synthesis temperature on the microstructures and basic dyes adsorption of titanate nanotubes.
    Lee CK; Lin KS; Wu CF; Lyu MD; Lo CC
    J Hazard Mater; 2008 Feb; 150(3):494-503. PubMed ID: 17561342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation Fe3O4@chitosan magnetic particles for covalent immobilization of lipase from Thermomyces lanuginosus.
    Wang XY; Jiang XP; Li Y; Zeng S; Zhang YW
    Int J Biol Macromol; 2015 Apr; 75():44-50. PubMed ID: 25603148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of one-dimensional sodium titanate nanostructures.
    Wei M; Qi ZM; Ichihara M; Honma I; Zhou H
    J Nanosci Nanotechnol; 2007 Mar; 7(3):1065-8. PubMed ID: 17450876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rh-induced support transformation phenomena in titanate nanowire and nanotube catalysts.
    Pótári G; Madarász D; Nagy L; László B; Sápi A; Oszkó A; Kukovecz A; Erdőhelyi A; Kónya Z; Kiss J
    Langmuir; 2013 Mar; 29(9):3061-72. PubMed ID: 23387804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covalent immobilization of porcine pancreatic lipase on carboxyl-activated magnetic nanoparticles: characterization and application for enzymatic inhibition assays.
    Zhu YT; Ren XY; Liu YM; Wei Y; Qing LS; Liao X
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():278-85. PubMed ID: 24656379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Urea sensing characteristics of titanate nanotubes deposited by electrophoretic deposition method.
    Ansari ZA; Ansari SG; Seo HK; Kim YS; Shin HS
    J Nanosci Nanotechnol; 2011 Apr; 11(4):3323-9. PubMed ID: 21776703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exquisite stability and catalytic performance of immobilized lipase on novel fabricated nanocellulose fused polypyrrole/graphene oxide nanocomposite: Characterization and application.
    Asmat S; Husain Q
    Int J Biol Macromol; 2018 Oct; 117():331-341. PubMed ID: 29857098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipase immobilization on epoxy-activated poly(vinyl acetate-acrylamide) microspheres.
    Zhang DH; Peng LJ; Wang Y; Li YQ
    Colloids Surf B Biointerfaces; 2015 May; 129():206-10. PubMed ID: 25863711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alkaline lipase from Pseudomonas fluorescens non-covalently immobilised on pristine versus oxidised multi-wall carbon nanotubes as efficient and recyclable catalytic systems in the synthesis of Solketal esters.
    Boncel S; Zniszczoł A; Szymańska K; Mrowiec-Białoń J; Jarzębski A; Walczak KZ
    Enzyme Microb Technol; 2013 Sep; 53(4):263-70. PubMed ID: 23931692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.