These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 31739272)

  • 1. Selective and efficient sequestration of phosphate from waters using reusable nano-Zr(IV) oxide impregnated agricultural residue anion exchanger.
    Hu Y; Du Y; Nie G; Zhu T; Ding Z; Wang H; Zhang L; Xu Y
    Sci Total Environ; 2020 Jan; 700():134999. PubMed ID: 31739272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced phosphate removal by using La-Zr binary metal oxide nanoparticles confined in millimeter-sized anion exchanger.
    Du Y; Wang X; Nie G; Xu L; Hu Y
    J Colloid Interface Sci; 2020 Nov; 580():234-244. PubMed ID: 32683120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preferable removal of phosphate from water using hydrous zirconium oxide-based nanocomposite of high stability.
    Chen L; Zhao X; Pan B; Zhang W; Hua M; Lv L; Zhang W
    J Hazard Mater; 2015 Mar; 284():35-42. PubMed ID: 25463215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of a Biomass-Based Hydrous Zirconium Oxide Nanocomposite for Preferable Phosphate Removal and Recovery.
    Qiu H; Liang C; Zhang X; Chen M; Zhao Y; Tao T; Xu Z; Liu G
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20835-44. PubMed ID: 26340586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of a new hydrous Zr(IV) oxide-based nanocomposite for enhanced Pb(II) and Cd(II) removal from waters.
    Hua M; Jiang Y; Wu B; Pan B; Zhao X; Zhang Q
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):12135-42. PubMed ID: 24168182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preferable phosphate sequestration using polymer-supported Mg/Al layered double hydroxide nanosheets.
    Nie G; Wu L; Qiu S; Xu Z; Wang H
    J Colloid Interface Sci; 2022 May; 614():583-592. PubMed ID: 35121517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced fluoride removal using Mg-Zr binary metal oxide nanoparticles confined in a strong-base anion exchanger.
    He C; Sun Y; Gu Y; Ji H
    Chemosphere; 2024 Jun; 358():141980. PubMed ID: 38670508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorus recovery from wastewater using pyridine-based ion-exchange resins: Role of impregnated iron oxide nanoparticles and preloaded Lewis acid (Cu
    Beaudry JW; Sengupta S
    Water Environ Res; 2021 May; 93(5):774-786. PubMed ID: 33108037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Phosphate Removal by Nanosized Hydrated La(III) Oxide Confined in Cross-linked Polystyrene Networks.
    Zhang Y; Pan B; Shan C; Gao X
    Environ Sci Technol; 2016 Feb; 50(3):1447-54. PubMed ID: 26730837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced fluoride removal from water by nanosized cerium oxides impregnated porous polystyrene anion exchanger.
    Dong H; Tang H; Shi X; Yang W; Chen W; Li H; Zhao Y; Zhang Z; Hua M
    Chemosphere; 2022 Jan; 287(Pt 1):131932. PubMed ID: 34455122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced phosphate removal from water by hydrated neodymium oxide-based nanocomposite: Performance, mechanism, and validation.
    Chen N; Ni C; Wu S; Chen D; Pan B
    J Colloid Interface Sci; 2023 Mar; 633():866-875. PubMed ID: 36495808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly efficient P uptake by Fe
    Liu C; Wang Y; Li X; Li J; Dong S; Hao H; Tong Y; Zhou Y
    J Environ Sci (China); 2022 Oct; 120():18-29. PubMed ID: 35623769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of a Novel Bifunctional Nanocomposite with Improved Selectivity for Simultaneous Nitrate and Phosphate Removal from Water.
    Yang W; Shi X; Wang J; Chen W; Zhang L; Zhang W; Zhang X; Lu J
    ACS Appl Mater Interfaces; 2019 Sep; 11(38):35277-35285. PubMed ID: 31465193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preferential capture of phosphate by an Enteromorpha prolifera-based biopolymer encapsulating hydrous zirconium oxide nanoparticles.
    Zhong QQ; Shen L; Zhao YQ; Hao YC; Meng LC; Liu YJ; Xu X; Shang YN; Gao BY; Yue QY
    Environ Sci Pollut Res Int; 2021 Jul; 28(26):34584-34597. PubMed ID: 33651293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Fabrication of a Biomass-Based Hydrous Zirconium Oxide Nanocomposite for Advanced Phosphate Removal].
    Qiu H; Qin ZF; Liu FL; Liang C; Song MX; Xu ZW; Guan YD
    Huan Jing Ke Xue; 2018 Mar; 39(3):1212-1219. PubMed ID: 29965466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of polymer-based nanosized hydrated ferric oxides (HFOs) for enhanced phosphate removal from waste effluents.
    Pan B; Wu J; Pan B; Lv L; Zhang W; Xiao L; Wang X; Tao X; Zheng S
    Water Res; 2009 Sep; 43(17):4421-9. PubMed ID: 19615711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance analysis of hydrated Zr(IV) oxide nanoparticle-impregnated anion exchange resin for selective phosphate removal.
    Bui TH; Hong SP; Kim C; Yoon J
    J Colloid Interface Sci; 2021 Mar; 586():741-747. PubMed ID: 33198977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Column-mode phosphate removal by a novel highly selective adsorbent.
    Zhu X; Jyo A
    Water Res; 2005 Jun; 39(11):2301-8. PubMed ID: 15939450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Performance of Polymer-based Titanium and Zirconium Oxides Composite Adsorbent for Simultaneous Removal of Phosphorus and Fluorine from Water].
    Chen JK; Nie GZ; Liu ZY; Yao Y; Xu YH
    Huan Jing Ke Xue; 2017 May; 38(5):1947-1956. PubMed ID: 29965100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous removal of As(V) and Cr(VI) from water by macroporous anion exchanger supported nanoscale hydrous ferric oxide composite.
    Hua M; Yang B; Shan C; Zhang W; He S; Lv L; Pan B
    Chemosphere; 2017 Mar; 171():126-133. PubMed ID: 28012384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.