These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 31739492)

  • 1. Dynamics Behaviors of Droplet on Hydrophobic Surfaces Driven by Electric Field.
    Liu J; Liu S
    Micromachines (Basel); 2019 Nov; 10(11):. PubMed ID: 31739492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electric manipulation on deformation of ionic ferrofluid sessile droplets.
    Zhu GP; Li XA; Wang QY; Fang MH; Ding YC
    Electrophoresis; 2024 Jul; 45(13-14):1243-1251. PubMed ID: 38308502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Droplet Rolling Transport on Hydrophobic Surfaces Under Rotating Electric Fields: A Molecular Dynamics Study.
    Liu W; Jing D
    Langmuir; 2023 Oct; 39(41):14660-14669. PubMed ID: 37802133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Study of Dielectrophoresis-Based Liquid Metal Droplet Control Microfluidic Device.
    Tian L; Ye Z; Gui L
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33806767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deformation hysteresis of a water nano-droplet in an electric field.
    Song F; Ju D; Fan J; Chen Q; Yang Q
    Eur Phys J E Soft Matter; 2019 Sep; 42(9):120. PubMed ID: 31494769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Digital Microfluidics: Magnetic Transportation and Coalescence of Sessile Droplets on Hydrophobic Surfaces.
    Hassan MR; Zhang J; Wang C
    Langmuir; 2021 May; 37(19):5823-5837. PubMed ID: 33961445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-powered droplet manipulation system for microfluidics based on triboelectric nanogenerator harvesting rotary energy.
    Yu J; Wei X; Guo Y; Zhang Z; Rui P; Zhao Y; Zhang W; Shi S; Wang P
    Lab Chip; 2021 Jan; 21(2):284-295. PubMed ID: 33439205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable Droplet Manipulation and Characterization by ac-DEP.
    Zhao K; Li D
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36572-36581. PubMed ID: 30264985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Smoothed particle hydrodynamics study of the roughness effect on contact angle and droplet flow.
    Shigorina E; Kordilla J; Tartakovsky AM
    Phys Rev E; 2017 Sep; 96(3-1):033115. PubMed ID: 29346900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AC electric field controlled non-Newtonian filament thinning and droplet formation on the microscale.
    Huang Y; Wang YL; Wong TN
    Lab Chip; 2017 Aug; 17(17):2969-2981. PubMed ID: 28745766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dielectrophoresis Response of Water-in-Oil-in-Water Double Emulsion Droplets with Singular or Dual Cores.
    Jiang T; Jia Y; Sun H; Deng X; Tang D; Ren Y
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33348930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pumping of electrolyte with mobile liquid metal droplets driven by continuous electrowetting: A full-scaled simulation study considering surface-coupled electrocapillary two-phase flow.
    Liu W; Tao Y; Ge Z; Zhou J; Xu R; Ren Y
    Electrophoresis; 2021 Apr; 42(7-8):950-966. PubMed ID: 33119900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variations of the Static Contact Angle of Ferrofluid Droplets on Solid Horizontal Surfaces in External Uniform Magnetic Fields.
    Edalatpour M; Sommers AD; Eid KF
    Langmuir; 2020 Jun; 36(22):6314-6322. PubMed ID: 31257887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental study of dielectrophoresis and liquid dielectrophoresis mechanisms for particle capture in a droplet.
    Tsai SL; Hong JL; Chen MK; Jang LS
    Electrophoresis; 2011 Jun; 32(11):1337-47. PubMed ID: 21538398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Confinement Dynamics of Nanodroplets between Two Surfaces: Effects of Wettability and Electric Field.
    Liu D; Cao Q; Piao Z; Li L
    Chemphyschem; 2022 Dec; 23(24):e202200184. PubMed ID: 35986551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Principles of droplet electrohydrodynamics for lab-on-a-chip.
    Zeng J; Korsmeyer T
    Lab Chip; 2004 Aug; 4(4):265-77. PubMed ID: 15269791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaporation of Sessile Water Droplets on Horizontal and Vertical Biphobic Patterned Surfaces.
    Qi W; Li J; Weisensee PB
    Langmuir; 2019 Dec; 35(52):17185-17192. PubMed ID: 31809043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new hydrodynamic interpretation of liquid metal droplet motion induced by an electrocapillary phenomenon.
    Ye J; Tan SC; Wang L; Liu J
    Soft Matter; 2021 Sep; 17(34):7835-7843. PubMed ID: 34612351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamical behaviors of nanodroplets impinging on solid surfaces in the presence of electric fields.
    Pan L; Chen Y; Li Z; Xie X
    Nanoscale; 2023 Mar; 15(13):6215-6224. PubMed ID: 36891750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical Study of Droplet Dynamics on a Solid Surface with Insoluble Surfactants.
    Zhang J; Liu H; Ba Y
    Langmuir; 2019 Jun; 35(24):7858-7870. PubMed ID: 31120757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.