These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 31739716)

  • 1. SNMFSMMA: using symmetric nonnegative matrix factorization and Kronecker regularized least squares to predict potential small molecule-microRNA association.
    Zhao Y; Chen X; Yin J; Qu J
    RNA Biol; 2020 Feb; 17(2):281-291. PubMed ID: 31739716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting potential small molecule-miRNA associations based on bounded nuclear norm regularization.
    Chen X; Zhou C; Wang CC; Zhao Y
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34404088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Computational Method for the Identification of Potential miRNA-Disease Association Based on Symmetric Non-negative Matrix Factorization and Kronecker Regularized Least Square.
    Zhao Y; Chen X; Yin J
    Front Genet; 2018; 9():324. PubMed ID: 30186308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of Small Molecule-MicroRNA Associations by Sparse Learning and Heterogeneous Graph Inference.
    Yin J; Chen X; Wang CC; Zhao Y; Sun YZ
    Mol Pharm; 2019 Jul; 16(7):3157-3166. PubMed ID: 31136190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-Network Collaborative Matrix Factorization for predicting small molecule-miRNA associations.
    Wang SH; Wang CC; Huang L; Miao LY; Chen X
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34864865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ensemble of kernel ridge regression-based small molecule-miRNA association prediction in human disease.
    Wang CC; Zhu CC; Chen X
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34676393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RFSMMA: A New Computational Model to Identify and Prioritize Potential Small Molecule-MiRNA Associations.
    Wang CC; Chen X; Qu J; Sun YZ; Li JQ
    J Chem Inf Model; 2019 Apr; 59(4):1668-1679. PubMed ID: 30840454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico prediction of potential miRNA-disease association using an integrative bioinformatics approach based on kernel fusion.
    Guan NN; Wang CC; Zhang L; Huang L; Li JQ; Piao X
    J Cell Mol Med; 2020 Jan; 24(1):573-587. PubMed ID: 31747722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graph regularized L
    Gao Z; Wang YT; Wu QW; Ni JC; Zheng CH
    BMC Bioinformatics; 2020 Feb; 21(1):61. PubMed ID: 32070280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MKRMDA: multiple kernel learning-based Kronecker regularized least squares for MiRNA-disease association prediction.
    Chen X; Niu YW; Wang GH; Yan GY
    J Transl Med; 2017 Dec; 15(1):251. PubMed ID: 29233191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hessian Regularized [Formula: see text]-Nonnegative Matrix Factorization and Deep Learning for miRNA-Disease Associations Prediction.
    Han GS; Gao Q; Peng LZ; Tang J
    Interdiscip Sci; 2024 Mar; 16(1):176-191. PubMed ID: 38099958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Silico Prediction of Small Molecule-miRNA Associations Based on the HeteSim Algorithm.
    Qu J; Chen X; Sun YZ; Zhao Y; Cai SB; Ming Z; You ZH; Li JQ
    Mol Ther Nucleic Acids; 2019 Mar; 14():274-286. PubMed ID: 30654189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Unified Framework for the Prediction of Small Molecule-MicroRNA Association Based on Cross-Layer Dependency Inference on Multilayered Networks.
    Wang CC; Chen X
    J Chem Inf Model; 2019 Dec; 59(12):5281-5293. PubMed ID: 31765567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An integrated framework for the identification of potential miRNA-disease association based on novel negative samples extraction strategy.
    Wang CC; Chen X; Yin J; Qu J
    RNA Biol; 2019 Mar; 16(3):257-269. PubMed ID: 30646823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction.
    Chen X; Yin J; Qu J; Huang L
    PLoS Comput Biol; 2018 Aug; 14(8):e1006418. PubMed ID: 30142158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneous graph inference with range constrainted L
    Wang S; Liu T; Ren C; Zhao Y; Qiao S; Zhang Y; Pang S
    Comput Biol Chem; 2024 Jun; 110():108078. PubMed ID: 38677013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An improved random forest-based computational model for predicting novel miRNA-disease associations.
    Yao D; Zhan X; Kwoh CK
    BMC Bioinformatics; 2019 Dec; 20(1):624. PubMed ID: 31795954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neighborhood-based inference and restricted Boltzmann machine for small molecule-miRNA associations prediction.
    Qu J; Song Z; Cheng X; Jiang Z; Zhou J
    PeerJ; 2023; 11():e15889. PubMed ID: 37641598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporating Clinical, Chemical and Biological Information for Predicting Small Molecule-microRNA Associations Based on Non-Negative Matrix Factorization.
    Luo J; Shen C; Lai Z; Cai J; Ding P
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2535-2545. PubMed ID: 32092012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MCMDA: Matrix completion for MiRNA-disease association prediction.
    Li JQ; Rong ZH; Chen X; Yan GY; You ZH
    Oncotarget; 2017 Mar; 8(13):21187-21199. PubMed ID: 28177900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.