These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 31739905)

  • 1. Light-Based Neuronal Activation: The Future of Cranial Nerve Stimulation.
    Kozin ED; Brown MC; Lee DJ; Stankovic KM
    Otolaryngol Clin North Am; 2020 Feb; 53(1):171-183. PubMed ID: 31739905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Concepts in Neural Stimulation: Electrical and Optical Modulation of the Auditory Pathways.
    Zhu A; Qureshi AA; Kozin ED; Lee DJ
    Otolaryngol Clin North Am; 2020 Feb; 53(1):31-43. PubMed ID: 31685241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined optogenetic and electrical stimulation of auditory neurons increases effective stimulation frequency-an in vitro study.
    Hart WL; Richardson RT; Kameneva T; Thompson AC; Wise AK; Fallon JB; Stoddart PR; Needham K
    J Neural Eng; 2020 Feb; 17(1):016069. PubMed ID: 31923907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optogenetic stimulation of the cochlea-A review of mechanisms, measurements, and first models.
    Weiss RS; Voss A; Hemmert W
    Network; 2016; 27(2-3):212-236. PubMed ID: 27644125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optogenetic stimulation of the auditory pathway for research and future prosthetics.
    Moser T
    Curr Opin Neurobiol; 2015 Oct; 34():29-36. PubMed ID: 25637880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards miniaturized closed-loop optogenetic stimulation devices.
    Edward ES; Kouzani AZ; Tye SJ
    J Neural Eng; 2018 Apr; 15(2):021002. PubMed ID: 29363618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction and control of neural responses to pulsatile electrical stimulation.
    Campbell LJ; Sly DJ; O'Leary SJ
    J Neural Eng; 2012 Apr; 9(2):026023. PubMed ID: 22419164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auditory brainstem activity and development evoked by apical versus basal cochlear implant electrode stimulation in children.
    Gordon KA; Papsin BC; Harrison RV
    Clin Neurophysiol; 2007 Aug; 118(8):1671-84. PubMed ID: 17588811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. History of Cranial Nerve-Implanted Stimulators in Otolaryngology.
    Aaron KA; Mudry AC
    Otolaryngol Clin North Am; 2020 Feb; 53(1):1-19. PubMed ID: 31699407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optogenetic stimulation of the auditory nerve.
    Hernandez VH; Gehrt A; Jing Z; Hoch G; Jeschke M; Strenzke N; Moser T
    J Vis Exp; 2014 Oct; (92):e52069. PubMed ID: 25350571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Cochlear Implant Performance Prognostic Test Based on Electrical Field Interactions Evaluated by eABR (Electrical Auditory Brainstem Responses).
    Guevara N; Hoen M; Truy E; Gallego S
    PLoS One; 2016; 11(5):e0155008. PubMed ID: 27149268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implantable optoelectronic probes for in vivo optogenetics.
    Iseri E; Kuzum D
    J Neural Eng; 2017 Jun; 14(3):031001. PubMed ID: 28198703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superior temporal resolution of Chronos versus channelrhodopsin-2 in an optogenetic model of the auditory brainstem implant.
    Hight AE; Kozin ED; Darrow K; Lehmann A; Boyden E; Brown MC; Lee DJ
    Hear Res; 2015 Apr; 322():235-41. PubMed ID: 25598479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multichannel cochlear implant for selective neuronal activation and chronic use in the free-moving Mongolian gerbil.
    Wiegner A; Wright CG; Vollmer M
    J Neurosci Methods; 2016 Nov; 273():40-54. PubMed ID: 27519925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optogenetic stimulation of the cochlear nucleus using channelrhodopsin-2 evokes activity in the central auditory pathways.
    Darrow KN; Slama MC; Kozin ED; Owoc M; Hancock K; Kempfle J; Edge A; Lacour S; Boyden E; Polley D; Brown MC; Lee DJ
    Brain Res; 2015 Mar; 1599():44-56. PubMed ID: 25481416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The cochlear implant; basic principles.
    Brackmann DE
    Laryngoscope; 1976 Mar; 86(3):373-88. PubMed ID: 1256212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Vivo Optogenetics with Stimulus Calibration.
    Coddington LT; Dudman JT
    Methods Mol Biol; 2021; 2188():273-283. PubMed ID: 33119857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasticity in central representations in the inferior colliculus induced by chronic single- vs. two-channel electrical stimulation by a cochlear implant after neonatal deafness.
    Leake PA; Snyder RL; Rebscher SJ; Moore CM; Vollmer M
    Hear Res; 2000 Sep; 147(1-2):221-41. PubMed ID: 10962187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Embedded Real-Time Processing Platform for Optogenetic Neuroprosthetic Applications.
    Yan B; Nirenberg S
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jan; 26(1):233-243. PubMed ID: 29035219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Considering optogenetic stimulation for cochlear implants.
    Jeschke M; Moser T
    Hear Res; 2015 Apr; 322():224-34. PubMed ID: 25601298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.