These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 31739905)
21. Near-infrared stimulation of the auditory nerve: A decade of progress toward an optical cochlear implant. Littlefield PD; Richter CP Laryngoscope Investig Otolaryngol; 2021 Apr; 6(2):310-319. PubMed ID: 33869763 [TBL] [Abstract][Full Text] [Related]
22. Optical developments for optogenetics. Papagiakoumou E Biol Cell; 2013 Oct; 105(10):443-64. PubMed ID: 23782010 [TBL] [Abstract][Full Text] [Related]
23. Multichannel optrodes for photonic stimulation. Xu Y; Xia N; Lim M; Tan X; Tran MH; Boulger E; Peng F; Young H; Rau C; Rack A; Richter CP Neurophotonics; 2018 Oct; 5(4):045002. PubMed ID: 30397630 [TBL] [Abstract][Full Text] [Related]
24. Transparent intracortical microprobe array for simultaneous spatiotemporal optical stimulation and multichannel electrical recording. Lee J; Ozden I; Song YK; Nurmikko AV Nat Methods; 2015 Dec; 12(12):1157-62. PubMed ID: 26457862 [TBL] [Abstract][Full Text] [Related]
25. Psychophysical measures from electrical stimulation of the human cochlear nucleus. Shannon RV; Otto SR Hear Res; 1990 Aug; 47(1-2):159-68. PubMed ID: 2228792 [TBL] [Abstract][Full Text] [Related]
26. The Ethics of Cranial Nerve Implants. Hansson SO Otolaryngol Clin North Am; 2020 Feb; 53(1):21-30. PubMed ID: 31648823 [TBL] [Abstract][Full Text] [Related]
27. Cochlear implants: the view from the brain. Middlebrooks JC; Bierer JA; Snyder RL Curr Opin Neurobiol; 2005 Aug; 15(4):488-93. PubMed ID: 16009544 [TBL] [Abstract][Full Text] [Related]
28. Miniaturized optogenetic neural implants: a review. Fan B; Li W Lab Chip; 2015 Oct; 15(19):3838-55. PubMed ID: 26308721 [TBL] [Abstract][Full Text] [Related]
29. Electrical cochlear stimulation in the deaf cat: comparisons between psychophysical and central auditory neuronal thresholds. Beitel RE; Snyder RL; Schreiner CE; Raggio MW; Leake PA J Neurophysiol; 2000 Apr; 83(4):2145-62. PubMed ID: 10758124 [TBL] [Abstract][Full Text] [Related]
30. Strategies for optical control and simultaneous electrical readout of extended cortical circuits. Ledochowitsch P; Yazdan-Shahmorad A; Bouchard KE; Diaz-Botia C; Hanson TL; He JW; Seybold BA; Olivero E; Phillips EA; Blanche TJ; Schreiner CE; Hasenstaub A; Chang EF; Sabes PN; Maharbiz MM J Neurosci Methods; 2015 Dec; 256():220-31. PubMed ID: 26296286 [TBL] [Abstract][Full Text] [Related]
31. Activity-dependent developmental plasticity of the auditory brain stem in children who use cochlear implants. Gordon KA; Papsin BC; Harrison RV Ear Hear; 2003 Dec; 24(6):485-500. PubMed ID: 14663348 [TBL] [Abstract][Full Text] [Related]
32. The consequences of deafness and chronic intracochlear electrical stimulation on the central auditory pathways. Hardie NA Clin Exp Pharmacol Physiol; 1998 May; 25(5):303-9. PubMed ID: 9612656 [TBL] [Abstract][Full Text] [Related]
33. Music perception with cochlear implants: a review. McDermott HJ Trends Amplif; 2004; 8(2):49-82. PubMed ID: 15497033 [TBL] [Abstract][Full Text] [Related]
34. Synaptic mechanisms of interaction between Deiters' nucleus and the nuclei of some cranial nerves. Fanardjian VV; Sarkisian VS Neuroscience; 1988 Jan; 24(1):135-42. PubMed ID: 3368044 [TBL] [Abstract][Full Text] [Related]
35. Noise enhances modulation sensitivity in cochlear implant listeners: stochastic resonance in a prosthetic sensory system? Chatterjee M; Robert ME J Assoc Res Otolaryngol; 2001 Jun; 2(2):159-71. PubMed ID: 11550525 [TBL] [Abstract][Full Text] [Related]
36. Degradation of temporal resolution in the auditory midbrain after prolonged deafness is reversed by electrical stimulation of the cochlea. Vollmer M; Leake PA; Beitel RE; Rebscher SJ; Snyder RL J Neurophysiol; 2005 Jun; 93(6):3339-55. PubMed ID: 15659529 [TBL] [Abstract][Full Text] [Related]
37. Chronic Deafness Degrades Temporal Acuity in the Electrically Stimulated Auditory Pathway. Middlebrooks JC J Assoc Res Otolaryngol; 2018 Oct; 19(5):541-557. PubMed ID: 29968099 [TBL] [Abstract][Full Text] [Related]
38. Advances in the development of visual prostheses. Lakhanpal RR; Yanai D; Weiland JD; Fujii GY; Caffey S; Greenberg RJ; de Juan E; Humayun MS Curr Opin Ophthalmol; 2003 Jun; 14(3):122-7. PubMed ID: 12777929 [TBL] [Abstract][Full Text] [Related]
39. Use it or lose it? Lessons learned from the developing brains of children who are deaf and use cochlear implants to hear. Gordon KA; Wong DD; Valero J; Jewell SF; Yoo P; Papsin BC Brain Topogr; 2011 Oct; 24(3-4):204-19. PubMed ID: 21479928 [TBL] [Abstract][Full Text] [Related]
40. OptoZIF Drive: a 3D printed implant and assembly tool package for neural recording and optical stimulation in freely moving mice. Freedman DS; Schroeder JB; Telian GI; Zhang Z; Sunil S; Ritt JT J Neural Eng; 2016 Dec; 13(6):066013. PubMed ID: 27762238 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]