These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 31740008)

  • 1. Sorption and desorption of Sr onto a rough single fractured granite.
    Zang J; Wang J; Han X; Yao H; Fu B; Zhao J; Li B; Chen J
    J Contam Hydrol; 2020 Jan; 228():103558. PubMed ID: 31740008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sorption of Sr in granite under typical colloidal action.
    Xu D; Zuo R; Han K; Ding F; Jin S; Zhao X; Shi R; Wang J
    J Contam Hydrol; 2020 Aug; 233():103659. PubMed ID: 32480100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strontium migration in a crystalline medium: effects of the presence of bentonite colloids.
    Albarran N; Missana T; García-Gutiérrez M; Alonso U; Mingarro M
    J Contam Hydrol; 2011 Mar; 122(1-4):76-85. PubMed ID: 21196062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences and implications of strontium distribution coefficient on various granite compositional materials.
    Cai F; Zhang X; Ma F; Qi L; Lu D; Dai Z
    Environ Sci Pollut Res Int; 2024 Jul; ():. PubMed ID: 39012533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the influence of bentonite colloids on strontium sorption in granite under various hydrogeochemical conditions.
    Cai F; Ma F; Zhang X; Reimus P; Qi L; Wang Y; Lu D; Thanh HV; Dai Z
    Sci Total Environ; 2023 Nov; 900():165819. PubMed ID: 37506897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of experimental variables onto Co(2+) and Sr(2+) sorption behavior in red mud-water suspensions.
    Milenković AS; Smičiklas ID; Šljivić-Ivanović MZ; Živković LS; Vukelić NS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016 Jul; 51(8):679-90. PubMed ID: 27089252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal ion sorption and desorption on zeolitized tuffs from the Nevada Test Site.
    Um W; Papelis C
    Environ Sci Technol; 2004 Jan; 38(2):496-502. PubMed ID: 14750725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of strontium and uranium sorption onto zirconium-antimony oxide/polyacrylonitrile (Zr-Sb oxide/PAN) composite using experimental design.
    Cakir P; Inan S; Altas Y
    J Hazard Mater; 2014 Apr; 271():108-19. PubMed ID: 24632364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of organic complexing agents on the interactions of Cs(+), Sr(2+) and UO(2)(2+) with silica and natural sand.
    Reinoso-Maset E; Worsfold PJ; Keith-Roach MJ
    Chemosphere; 2013 May; 91(7):948-54. PubMed ID: 23473428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of strontium sorption onto Kula volcanics using Central Composite Design.
    Kütahyalı C; Cetinkaya B; Acar MB; Işık NO; Cireli I
    J Hazard Mater; 2012 Jan; 201-202():115-24. PubMed ID: 22154872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactive transport of 85Sr in a chernobyl sand column: static and dynamic experiments and modeling.
    Szenknect S; Ardois C; Gaudet JP; Barthès V
    J Contam Hydrol; 2005 Jan; 76(1-2):139-65. PubMed ID: 15588576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of
    Kim WS; Han S; Ahn J; Um W
    Environ Geochem Health; 2019 Feb; 41(1):411-425. PubMed ID: 29796958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sorption kinetics of strontium in porous hydrous ferric oxide aggregates II. Comparison of experimental results and model predictions.
    Hofmann A; van Beinum W; Meeussen JC; Kretzschmar R
    J Colloid Interface Sci; 2005 Mar; 283(1):29-40. PubMed ID: 15694421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of water content on reactive transport of 85Sr in Chernobyl sand columns.
    Szenknect S; Ardois C; Dewière L; Gaudet JP
    J Contam Hydrol; 2008 Aug; 100(1-2):47-57. PubMed ID: 18586351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plutonium reactive transport in fractured granite: Multi-species experiments and simulations.
    Zhang X; Wang Z; Reimus P; Ma F; Soltanian MR; Xing B; Zang J; Wang Y; Dai Z
    Water Res; 2022 Oct; 224():119068. PubMed ID: 36103780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strontium uptake by cementitious materials.
    Wieland E; Tits J; Kunz D; Dähn R
    Environ Sci Technol; 2008 Jan; 42(2):403-9. PubMed ID: 18284138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fractional derivative model for nuclides transport in heterogeneous fractured media.
    Wang Z; Sun H; Tang Z; Li B; Qian J; Zhang C
    J Contam Hydrol; 2023 Nov; 259():104265. PubMed ID: 37980823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Mineral Compositions on Matrix Diffusion and Sorption of
    Yang X; Ge X; He J; Wang C; Qi L; Wang X; Liu C
    Environ Sci Technol; 2018 Feb; 52(3):1320-1329. PubMed ID: 29287146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental investigation of the hydraulic and heat-transfer properties of artificially fractured granite.
    Luo J; Zhu Y; Guo Q; Tan L; Zhuang Y; Liu M; Zhang C; Xiang W; Rohn J
    Sci Rep; 2017 Jan; 7():39882. PubMed ID: 28054594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sorption of Eu(III) on granite: EPMA, LA-ICP-MS, batch and modeling studies.
    Fukushi K; Hasegawa Y; Maeda K; Aoi Y; Tamura A; Arai S; Yamamoto Y; Aosai D; Mizuno T
    Environ Sci Technol; 2013 Nov; 47(22):12811-8. PubMed ID: 24171426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.