These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31740235)

  • 1. Neurotoxicity of Mn
    Chen X; Wu G; Zhang Z; Ma X; Liu L
    Ecotoxicol Environ Saf; 2020 Jan; 188():109909. PubMed ID: 31740235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repeated administrations of Mn
    Zhang X; Yue Z; Zhang H; Liu L; Zhou X
    Nanotoxicology; 2020 Apr; 14(3):326-340. PubMed ID: 31909642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal(loid) oxide (Al
    Sousa CA; Soares HMVM; Soares EV
    Appl Microbiol Biotechnol; 2019 Aug; 103(15):6257-6269. PubMed ID: 31152204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 'Trojan-Horse' stress-granule formation mediated by manganese oxide nanoparticles.
    Illarionova NB; Morozova KN; Petrovskii DV; Sharapova MB; Romashchenko AV; Troitskii SY; Kiseleva E; Moshkin YM; Moshkin MP
    Nanotoxicology; 2020 Dec; 14(10):1432-1444. PubMed ID: 33320703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the effects of MnO
    Ashrafi Hafez A; Naserzadeh P; Mortazavian AM; Mehravi B; Ashtari K; Seydi E; Salimi A
    Toxicol Mech Methods; 2019 Feb; 29(2):86-94. PubMed ID: 30132356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Are in vivo and in vitro assessments of comparative and combined toxicity of the same metallic nanoparticles compatible, or contradictory, or both? A juxtaposition of data obtained in respective experiments with NiO and Mn
    Minigalieva I; Bushueva T; Fröhlich E; Meindl C; Öhlinger K; Panov V; Varaksin A; Shur V; Shishkina E; Gurviсh V; Katsnelson B
    Food Chem Toxicol; 2017 Nov; 109(Pt 1):393-404. PubMed ID: 28935498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of manganese oxide nanoparticles and manganese sulfate with regard to oxidative stress, uptake and apoptosis in alveolar epithelial cells.
    Frick R; Müller-Edenborn B; Schlicker A; Rothen-Rutishauser B; Raemy DO; Günther D; Hattendorf B; Stark W; Beck-Schimmer B
    Toxicol Lett; 2011 Aug; 205(2):163-72. PubMed ID: 21669262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurotoxicity of silica nanoparticles: brain localization and dopaminergic neurons damage pathways.
    Wu J; Wang C; Sun J; Xue Y
    ACS Nano; 2011 Jun; 5(6):4476-89. PubMed ID: 21526751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. α-Synuclein protects against manganese neurotoxic insult during the early stages of exposure in a dopaminergic cell model of Parkinson's disease.
    Harischandra DS; Jin H; Anantharam V; Kanthasamy A; Kanthasamy AG
    Toxicol Sci; 2015 Feb; 143(2):454-68. PubMed ID: 25416158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular mechanism of manganese exposure-induced dopaminergic toxicity.
    Prabhakaran K; Ghosh D; Chapman GD; Gunasekar PG
    Brain Res Bull; 2008 Jul; 76(4):361-7. PubMed ID: 18502311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dopamine-induced apoptosis is mediated by oxidative stress and Is enhanced by cyanide in differentiated PC12 cells.
    Jones DC; Gunasekar PG; Borowitz JL; Isom GE
    J Neurochem; 2000 Jun; 74(6):2296-304. PubMed ID: 10820189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissolution and bandgap paradigms for predicting the toxicity of metal oxide nanoparticles in the marine environment: an in vivo study with oyster embryos.
    Noventa S; Hacker C; Rowe D; Elgy C; Galloway T
    Nanotoxicology; 2018 Feb; 12(1):63-78. PubMed ID: 29262761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inorganic nanoparticles enhance the production of reactive oxygen species (ROS) during the autoxidation of L-3,4-dihydroxyphenylalanine (L-dopa).
    Luna-Velasco A; Field JA; Cobo-Curiel A; Sierra-Alvarez R
    Chemosphere; 2011 Sep; 85(1):19-25. PubMed ID: 21737115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of JNK and P53 activation in G2/M cell cycle arrest and apoptosis induced by titanium dioxide nanoparticles in neuron cells.
    Wu J; Sun J; Xue Y
    Toxicol Lett; 2010 Dec; 199(3):269-76. PubMed ID: 20863874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exposure to sublethal concentrations of Co
    Heinlaan M; Muna M; Juganson K; Oriekhova O; Stoll S; Kahru A; Slaveykova VI
    Aquat Toxicol; 2017 Aug; 189():123-133. PubMed ID: 28623688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TiO2 nanoparticles-induced apoptosis of primary cultured Sertoli cells of mice.
    Hong F; Zhao X; Chen M; Zhou Y; Ze Y; Wang L; Wang Y; Ge Y; Zhang Q; Ye L
    J Biomed Mater Res A; 2016 Jan; 104(1):124-35. PubMed ID: 26238530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurotoxic potential of iron oxide nanoparticles in the rat brain striatum and hippocampus.
    Wu J; Ding T; Sun J
    Neurotoxicology; 2013 Jan; 34():243-53. PubMed ID: 22995439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytochrome P450-dependent reactive oxygen species (ROS) production contributes to Mn
    Yue Z; Zhang X; Yu Q; Liu L; Zhou X
    RSC Adv; 2018 Nov; 8(65):37307-37314. PubMed ID: 35557821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of the mitochondrial calcium uniporter inhibits Aβ-induced apoptosis by reducing reactive oxygen species-mediated endoplasmic reticulum stress in cultured microglia.
    Xie N; Wu C; Wang C; Cheng X; Zhang L; Zhang H; Lian Y
    Brain Res; 2017 Dec; 1676():100-106. PubMed ID: 28939404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion.
    Hussain SM; Javorina AK; Schrand AM; Duhart HM; Ali SF; Schlager JJ
    Toxicol Sci; 2006 Aug; 92(2):456-63. PubMed ID: 16714391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.