BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31740308)

  • 1. Suppression mechanism of Al dust explosion by melamine polyphosphate and melamine cyanurate.
    Jiang H; Bi M; Gao W
    J Hazard Mater; 2020 Mar; 386():121648. PubMed ID: 31740308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flame suppression mechanism of aluminum dust cloud by melamine cyanurate and melamine polyphosphate.
    Jiang H; Bi M; Ma D; Li B; Cong H; Gao W
    J Hazard Mater; 2019 Apr; 368():797-810. PubMed ID: 30743227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition evaluation of ABC powder in aluminum dust explosion.
    Jiang H; Bi M; Li B; Zhang D; Gao W
    J Hazard Mater; 2019 Jan; 361():273-282. PubMed ID: 30205267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of aluminum dust explosion by NaHCO
    Jiang H; Bi M; Gao W; Gan B; Zhang D; Zhang Q
    J Hazard Mater; 2018 Feb; 344():902-912. PubMed ID: 29195101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition evaluation of gas inhibitors in micron-sized aluminum dust explosion.
    Zhang S; Bi M; Jiang H; Gao W
    J Hazard Mater; 2020 Jul; 393():122524. PubMed ID: 32197205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Moderation of Al dust explosions by micro- and nano-sized Al
    Bu Y; Li C; Amyotte P; Yuan W; Yuan C; Li G
    J Hazard Mater; 2020 Jan; 381():120968. PubMed ID: 31446226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of dust dispersibility on the suppressant enhanced explosion parameter (SEEP) in flame propagation of Al dust clouds.
    Bu Y; Amyotte P; Li C; Yuan W; Yuan C; Li G
    J Hazard Mater; 2021 Feb; 404(Pt B):124119. PubMed ID: 33075625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research on inhibitory effect of mixed suppressants CaCO
    Liu T; Liu K
    Sci Rep; 2024 Mar; 14(1):7324. PubMed ID: 38538737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Explosion parameters and combustion kinetics of biomass dust.
    Liu A; Chen J; Huang X; Lin J; Zhang X; Xu W
    Bioresour Technol; 2019 Dec; 294():122168. PubMed ID: 31569047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Explosion behaviors of hybrid C
    Song SX; Cheng YF; Wang WT; Wang ZH; Zhang BB
    J Hazard Mater; 2021 Aug; 416():125783. PubMed ID: 33839503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanometal Dust Explosion in Confined Vessel: Combustion and Kinetic Analysis.
    Mohd Mokhtar K; Kasmani RM; Che Hassan CR; Hamid MD; Mohamad Nor MI; Mohd Junaidi MU; Ibrahim N
    ACS Omega; 2021 Jul; 6(28):17831-17838. PubMed ID: 34308018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The quantitative studies on gas explosion suppression by an inert rock dust deposit.
    Song Y; Zhang Q
    J Hazard Mater; 2018 Jul; 353():62-69. PubMed ID: 29635175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Research on Explosion Pressure Characteristics of Long Flame Coal Dust and the Inhibition Effect of Different Explosion Suppressants.
    Liu T; Gao Z; Xu Y; Duan G; Wang X
    ACS Omega; 2023 Oct; 8(39):35919-35928. PubMed ID: 37810723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High methane natural gas/air explosion characteristics in confined vessel.
    Tang C; Zhang S; Si Z; Huang Z; Zhang K; Jin Z
    J Hazard Mater; 2014 Aug; 278():520-8. PubMed ID: 25010457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overall characterization of cork dust explosion.
    Pilão R; Ramalho E; Pinho C
    J Hazard Mater; 2006 May; 133(1-3):183-95. PubMed ID: 16297545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation on the Explosion Characteristics of an Aluminum Dust-Diethyl Ether-Air Mixture.
    Yao N; Bai C; Wang L; Liu N
    ACS Omega; 2021 Jul; 6(29):18868-18875. PubMed ID: 34337226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activating Aluminum Reactivity with Fluoropolymer Coatings for Improved Energetic Composite Combustion.
    McCollum J; Pantoya ML; Iacono ST
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18742-9. PubMed ID: 26263844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reducing aluminum dust explosion hazards: case study of dust inerting in an aluminum buffing operation.
    Myers TJ
    J Hazard Mater; 2008 Nov; 159(1):72-80. PubMed ID: 18423857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An investigation of the consequences of primary dust explosions in interconnected vessels.
    Kosinski P; Hoffmann AC
    J Hazard Mater; 2006 Sep; 137(2):752-61. PubMed ID: 16730896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the decomposition reaction and dust explosion characteristics of crystalline benzoyl peroxides.
    Lu KT; Chen TC; Hu KH
    J Hazard Mater; 2009 Jan; 161(1):246-56. PubMed ID: 18440131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.