These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 31740342)

  • 1. There is no single functional atlas even for a single individual: Functional parcel definitions change with task.
    Salehi M; Greene AS; Karbasi A; Shen X; Scheinost D; Constable RT
    Neuroimage; 2020 Mar; 208():116366. PubMed ID: 31740342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.
    James GA; Hazaroglu O; Bush KA
    Magn Reson Imaging; 2016 Feb; 34(2):209-18. PubMed ID: 26523655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Individualized functional networks reconfigure with cognitive state.
    Salehi M; Karbasi A; Barron DS; Scheinost D; Constable RT
    Neuroimage; 2020 Feb; 206():116233. PubMed ID: 31574322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional atlas of the awake rat brain: A neuroimaging study of rat brain specialization and integration.
    Ma Z; Perez P; Ma Z; Liu Y; Hamilton C; Liang Z; Zhang N
    Neuroimage; 2018 Apr; 170():95-112. PubMed ID: 27393420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using connectomics for predictive assessment of brain parcellations.
    Albers KJ; Ambrosen KS; Liptrot MG; Dyrby TB; Schmidt MN; Mørup M
    Neuroimage; 2021 Sep; 238():118170. PubMed ID: 34087365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Individual parcellation of resting fMRI with a group functional connectivity prior.
    Chong M; Bhushan C; Joshi AA; Choi S; Haldar JP; Shattuck DW; Spreng RN; Leahy RM
    Neuroimage; 2017 Aug; 156():87-100. PubMed ID: 28478226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Handedness-dependent functional organizational patterns within the bilateral vestibular cortical network revealed by fMRI connectivity based parcellation.
    Kirsch V; Boegle R; Keeser D; Kierig E; Ertl-Wagner B; Brandt T; Dieterich M
    Neuroimage; 2018 Sep; 178():224-237. PubMed ID: 29787866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Human Brainnetome Atlas: A New Brain Atlas Based on Connectional Architecture.
    Fan L; Li H; Zhuo J; Zhang Y; Wang J; Chen L; Yang Z; Chu C; Xie S; Laird AR; Fox PT; Eickhoff SB; Yu C; Jiang T
    Cereb Cortex; 2016 Aug; 26(8):3508-26. PubMed ID: 27230218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-scale intrinsic connectivity is consistent across varying task demands.
    Kieliba P; Madugula S; Filippini N; Duff EP; Makin TR
    PLoS One; 2019; 14(4):e0213861. PubMed ID: 30970031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AICHA: An atlas of intrinsic connectivity of homotopic areas.
    Joliot M; Jobard G; Naveau M; Delcroix N; Petit L; Zago L; Crivello F; Mellet E; Mazoyer B; Tzourio-Mazoyer N
    J Neurosci Methods; 2015 Oct; 254():46-59. PubMed ID: 26213217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining task-related activation and connectivity analysis of fMRI data reveals complex modulation of brain networks.
    Gerchen MF; Kirsch P
    Hum Brain Mapp; 2017 Nov; 38(11):5726-5739. PubMed ID: 28782871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing Connectivity-Driven Brain Parcellation Using Ensemble Clustering.
    Kurmukov A; Mussabaeva A; Denisova Y; Moyer D; Jahanshad N; Thompson PM; Gutman BA
    Brain Connect; 2020 May; 10(4):183-194. PubMed ID: 32264696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Task-evoked Negative BOLD Response and Functional Connectivity in the Default Mode Network are Representative of Two Overlapping but Separate Neurophysiological Processes.
    Parker DB; Razlighi QR
    Sci Rep; 2019 Oct; 9(1):14473. PubMed ID: 31597927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constructing Connectome Atlas by Graph Laplacian Learning.
    Kim M; Yan C; Yang D; Liang P; Kaufer DI; Wu G
    Neuroinformatics; 2021 Apr; 19(2):233-249. PubMed ID: 32712763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fine-grain atlases of functional modes for fMRI analysis.
    Dadi K; Varoquaux G; Machlouzarides-Shalit A; Gorgolewski KJ; Wassermann D; Thirion B; Mensch A
    Neuroimage; 2020 Nov; 221():117126. PubMed ID: 32673748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data-Driven Parcellation Approaches Based on Functional Connectivity of Visual Cortices in Primary Open-Angle Glaucoma.
    Qu H; Wang Y; Yan T; Zhou J; Lu W; Qiu J
    Invest Ophthalmol Vis Sci; 2020 Jul; 61(8):33. PubMed ID: 32716501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LEICA: Laplacian eigenmaps for group ICA decomposition of fMRI data.
    Liu C; JaJa J; Pessoa L
    Neuroimage; 2018 Apr; 169():363-373. PubMed ID: 29246846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collective sparse symmetric non-negative matrix factorization for identifying overlapping communities in resting-state brain functional networks.
    Li X; Gan JQ; Wang H
    Neuroimage; 2018 Feb; 166():259-275. PubMed ID: 29117581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-function relationships during segregated and integrated network states of human brain functional connectivity.
    Fukushima M; Betzel RF; He Y; van den Heuvel MP; Zuo XN; Sporns O
    Brain Struct Funct; 2018 Apr; 223(3):1091-1106. PubMed ID: 29090337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subject-specific segregation of functional territories based on deep phenotyping.
    Pinho AL; Amadon A; Fabre M; Dohmatob E; Denghien I; Torre JJ; Ginisty C; Becuwe-Desmidt S; Roger S; Laurier L; Joly-Testault V; Médiouni-Cloarec G; Doublé C; Martins B; Pinel P; Eger E; Varoquaux G; Pallier C; Dehaene S; Hertz-Pannier L; Thirion B
    Hum Brain Mapp; 2021 Mar; 42(4):841-870. PubMed ID: 33368868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.