BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 31740647)

  • 21. Target selection for antisense oligonucleotide induced exon skipping in the dystrophin gene.
    Errington SJ; Mann CJ; Fletcher S; Wilton SD
    J Gene Med; 2003 Jun; 5(6):518-27. PubMed ID: 12797117
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Normal and abnormal mechanisms of gene splicing and relevance to inherited skin diseases.
    Wessagowit V; Nalla VK; Rogan PK; McGrath JA
    J Dermatol Sci; 2005 Nov; 40(2):73-84. PubMed ID: 16054339
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Non-syndromic retinitis pigmentosa.
    Verbakel SK; van Huet RAC; Boon CJF; den Hollander AI; Collin RWJ; Klaver CCW; Hoyng CB; Roepman R; Klevering BJ
    Prog Retin Eye Res; 2018 Sep; 66():157-186. PubMed ID: 29597005
    [TBL] [Abstract][Full Text] [Related]  

  • 24. RNA-based therapies in inherited retinal diseases.
    Girach A; Audo I; Birch DG; Huckfeldt RM; Lam BL; Leroy BP; Michaelides M; Russell SR; Sallum JMF; Stingl K; Tsang SH; Yang P
    Ther Adv Ophthalmol; 2022; 14():25158414221134602. PubMed ID: 36388727
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Systematic Approach to Developing Splice Modulating Antisense Oligonucleotides.
    Aung-Htut MT; McIntosh CS; Ham KA; Pitout IL; Flynn LL; Greer K; Fletcher S; Wilton SD
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31614438
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modification of alternative splicing by antisense oligonucleotides as a potential chemotherapy for cancer and other diseases.
    Mercatante DR; Sazani P; Kole R
    Curr Cancer Drug Targets; 2001 Nov; 1(3):211-30. PubMed ID: 12188880
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Applications of antisense oligonucleotides for the treatment of inherited retinal diseases.
    Collin RW; Garanto A
    Curr Opin Ophthalmol; 2017 May; 28(3):260-266. PubMed ID: 28151748
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Splicing defects caused by exonic mutations in PKD1 as a new mechanism of pathogenesis in autosomal dominant polycystic kidney disease.
    Claverie-Martin F; Gonzalez-Paredes FJ; Ramos-Trujillo E
    RNA Biol; 2015; 12(4):369-74. PubMed ID: 25757501
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional analysis of splicing mutations in the IDS gene and the use of antisense oligonucleotides to exploit an alternative therapy for MPS II.
    Matos L; Gonçalves V; Pinto E; Laranjeira F; Prata MJ; Jordan P; Desviat LR; Pérez B; Alves S
    Biochim Biophys Acta; 2015 Dec; 1852(12):2712-21. PubMed ID: 26407519
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Designing Effective Antisense Oligonucleotides for Exon Skipping.
    Shimo T; Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1687():143-155. PubMed ID: 29067661
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Course of Ocular Function in PRPF31 Retinitis Pigmentosa.
    Hafler BP; Comander J; Weigel DiFranco C; Place EM; Pierce EA
    Semin Ophthalmol; 2016; 31(1-2):49-52. PubMed ID: 26959129
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Specific removal of the nonsense mutation from the mdx dystrophin mRNA using antisense oligonucleotides.
    Wilton SD; Lloyd F; Carville K; Fletcher S; Honeyman K; Agrawal S; Kole R
    Neuromuscul Disord; 1999 Jul; 9(5):330-8. PubMed ID: 10407856
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetic therapies for inherited neuromuscular disorders.
    Scoto M; Finkel R; Mercuri E; Muntoni F
    Lancet Child Adolesc Health; 2018 Aug; 2(8):600-609. PubMed ID: 30119719
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Targeted RP9 ablation and mutagenesis in mouse photoreceptor cells by CRISPR-Cas9.
    Lv JN; Zhou GH; Chen X; Chen H; Wu KC; Xiang L; Lei XL; Zhang X; Wu RH; Jin ZB
    Sci Rep; 2017 Feb; 7():43062. PubMed ID: 28216641
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Splicing in the immune system: potential targets for therapeutic intervention by antisense-mediated alternative splicing.
    Mourich DV; Iversen PL
    Curr Opin Mol Ther; 2009 Apr; 11(2):124-32. PubMed ID: 19330718
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mutations in the pre-mRNA splicing factor gene PRPC8 in autosomal dominant retinitis pigmentosa (RP13).
    McKie AB; McHale JC; Keen TJ; Tarttelin EE; Goliath R; van Lith-Verhoeven JJ; Greenberg J; Ramesar RS; Hoyng CB; Cremers FP; Mackey DA; Bhattacharya SS; Bird AC; Markham AF; Inglehearn CF
    Hum Mol Genet; 2001 Jul; 10(15):1555-62. PubMed ID: 11468273
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Emerging therapies for inherited retinal degeneration.
    Scholl HP; Strauss RW; Singh MS; Dalkara D; Roska B; Picaud S; Sahel JA
    Sci Transl Med; 2016 Dec; 8(368):368rv6. PubMed ID: 27928030
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Precision Medicine through Antisense Oligonucleotide-Mediated Exon Skipping.
    Li D; Mastaglia FL; Fletcher S; Wilton SD
    Trends Pharmacol Sci; 2018 Nov; 39(11):982-994. PubMed ID: 30282590
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An Overview of Recent Advances and Clinical Applications of Exon Skipping and Splice Modulation for Muscular Dystrophy and Various Genetic Diseases.
    Rodrigues M; Yokota T
    Methods Mol Biol; 2018; 1828():31-55. PubMed ID: 30171533
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antisense-mediated splice intervention to treat human disease: the odyssey continues.
    Pitout I; Flynn LL; Wilton SD; Fletcher S
    F1000Res; 2019; 8():. PubMed ID: 31164976
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.