These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 31740647)

  • 41. Targeting Splicing in the Treatment of Human Disease.
    Suñé-Pou M; Prieto-Sánchez S; Boyero-Corral S; Moreno-Castro C; El Yousfi Y; Suñé-Negre JM; Hernández-Munain C; Suñé C
    Genes (Basel); 2017 Feb; 8(3):. PubMed ID: 28245575
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Innovative Therapeutic and Delivery Approaches Using Nanotechnology to Correct Splicing Defects Underlying Disease.
    Suñé-Pou M; Limeres MJ; Moreno-Castro C; Hernández-Munain C; Suñé-Negre JM; Cuestas ML; Suñé C
    Front Genet; 2020; 11():731. PubMed ID: 32760425
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Gene therapeutic approaches for dominant retinopathies.
    Farrar GJ; Palfi A; O'Reilly M
    Curr Gene Ther; 2010 Oct; 10(5):381-8. PubMed ID: 20712579
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Antisense Oligonucleotide Screening to Optimize the Rescue of the Splicing Defect Caused by the Recurrent Deep-Intronic
    Garanto A; Duijkers L; Tomkiewicz TZ; Collin RWJ
    Genes (Basel); 2019 Jun; 10(6):. PubMed ID: 31197102
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A deep intronic mutation in FGB creates a consensus exonic splicing enhancer motif that results in afibrinogenemia caused by aberrant mRNA splicing, which can be corrected in vitro with antisense oligonucleotide treatment.
    Davis RL; Homer VM; George PM; Brennan SO
    Hum Mutat; 2009 Feb; 30(2):221-7. PubMed ID: 18853456
    [TBL] [Abstract][Full Text] [Related]  

  • 46.
    Bakondi B
    Expert Rev Ophthalmol; 2016; 11(6):397-400. PubMed ID: 28163772
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Antisense therapy corrects nonsense mutation by exon skipping.
    Lu QL; Partridge TA
    Discov Med; 2003 Dec; 3(19):39-44. PubMed ID: 20705037
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular genetics and emerging therapies for retinitis pigmentosa: Basic research and clinical perspectives.
    Dias MF; Joo K; Kemp JA; Fialho SL; da Silva Cunha A; Woo SJ; Kwon YJ
    Prog Retin Eye Res; 2018 Mar; 63():107-131. PubMed ID: 29097191
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Systemic splicing factor deficiency causes tissue-specific defects: a zebrafish model for retinitis pigmentosa.
    Linder B; Dill H; Hirmer A; Brocher J; Lee GP; Mathavan S; Bolz HJ; Winkler C; Laggerbauer B; Fischer U
    Hum Mol Genet; 2011 Jan; 20(2):368-77. PubMed ID: 21051334
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sensitivity of splice sites to antisense oligonucleotides in vivo.
    Sierakowska H; Sambade MJ; Schümperli D; Kole R
    RNA; 1999 Mar; 5(3):369-77. PubMed ID: 10094306
    [TBL] [Abstract][Full Text] [Related]  

  • 51. CLINICAL PROGRESS IN INHERITED RETINAL DEGENERATIONS: GENE THERAPY CLINICAL TRIALS AND ADVANCES IN GENETIC SEQUENCING.
    Hafler BP
    Retina; 2017 Mar; 37(3):417-423. PubMed ID: 27753762
    [TBL] [Abstract][Full Text] [Related]  

  • 52. RNA Secondary Structure-Based Design of Antisense Peptide Nucleic Acids for Modulating Disease-Associated Aberrant Tau Pre-mRNA Alternative Splicing.
    Ong AAL; Tan J; Bhadra M; Dezanet C; Patil KM; Chong MS; Kierzek R; Decout JL; Roca X; Chen G
    Molecules; 2019 Aug; 24(16):. PubMed ID: 31434312
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Splicing-correcting therapeutic approaches for retinal dystrophies: where endogenous gene regulation and specificity matter.
    Bacchi N; Casarosa S; Denti MA
    Invest Ophthalmol Vis Sci; 2014 May; 55(5):3285-94. PubMed ID: 24867912
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hereditary Retinal Dystrophy.
    Hohman TC
    Handb Exp Pharmacol; 2017; 242():337-367. PubMed ID: 28035529
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Direct Reprogramming of Human DMD Fibroblasts into Myotubes for In Vitro Evaluation of Antisense-Mediated Exon Skipping and Exons 45-55 Skipping Accompanied by Rescue of Dystrophin Expression.
    Lee JJA; Saito T; Duddy W; Takeda S; Yokota T
    Methods Mol Biol; 2018; 1828():141-150. PubMed ID: 30171539
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Correction of aberrant pre-mRNA splicing by antisense oligonucleotides in beta-thalassemia Egyptian patients with IVSI-110 mutation.
    El-Beshlawy A; Mostafa A; Youssry I; Gabr H; Mansour IM; El-Tablawy M; Aziz M; Hussein IR
    J Pediatr Hematol Oncol; 2008 Apr; 30(4):281-4. PubMed ID: 18391696
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In Vitro Modulation of Endogenous Alternative Splicing Using Splice-Switching Antisense Oligonucleotides.
    Park JE; Cartegni L
    Methods Mol Biol; 2017; 1648():39-52. PubMed ID: 28766288
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Animal models in research on retinal degenerations: past progress and future hope.
    Chader GJ
    Vision Res; 2002 Feb; 42(4):393-9. PubMed ID: 11853755
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Exonic sequences provide better targets for antisense oligonucleotides than splice site sequences in the modulation of Duchenne muscular dystrophy splicing.
    Aartsma-Rus A; Houlleberghs H; van Deutekom JC; van Ommen GJ; 't Hoen PA
    Oligonucleotides; 2010 Apr; 20(2):69-77. PubMed ID: 20377429
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evolving concepts on human SMN pre-mRNA splicing.
    Singh RN
    RNA Biol; 2007; 4(1):7-10. PubMed ID: 17592254
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.