These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 31740650)

  • 1. The Effect of Stimulus Size and Eccentricity on Attention Shift Latencies.
    Kulke L
    Vision (Basel); 2017 Dec; 1(4):. PubMed ID: 31740650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Saccades to spatially extended targets: the role of eccentricity.
    Dick S; Ostendorf F; Kraft A; Ploner CJ
    Neuroreport; 2004 Mar; 15(3):453-6. PubMed ID: 15094502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of frontal eye field and superior colliculus lesions on saccadic latencies in the rhesus monkey.
    Schiller PH; Sandell JH; Maunsell JH
    J Neurophysiol; 1987 Apr; 57(4):1033-49. PubMed ID: 3585453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural mechanisms of attention become more specialised during infancy: Insights from combined eye tracking and EEG.
    Kulke L; Atkinson J; Braddick O
    Dev Psychobiol; 2017 Mar; 59(2):250-260. PubMed ID: 27976814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined eye-head gaze shifts to visual and auditory targets in humans.
    Goldring JE; Dorris MC; Corneil BD; Ballantyne PA; Munoz DP
    Exp Brain Res; 1996 Sep; 111(1):68-78. PubMed ID: 8891638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impaired Attention Orienting in Young Children With Fragile X Syndrome.
    Chernenok M; Burris JL; Owen E; Rivera SM
    Front Psychol; 2019; 10():1567. PubMed ID: 31354578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of gap and overlap paradigms on saccade latencies and vergence eye movements in seven-year-old children.
    Bucci MP; Pouvreau N; Yang Q; Kapoula Z
    Exp Brain Res; 2005 Jul; 164(1):48-57. PubMed ID: 15726340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multisensory temporal binding induces an illusory gap/overlap that reduces the expected audiovisual interactions on saccades but not manual responses.
    Vidal M; Vitu F
    PLoS One; 2022; 17(4):e0266468. PubMed ID: 35390067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the time course and accuracy of spatial localization: basic data and a two-process model.
    Adam JJ; Ketelaars M; Kingma H; Hoek T
    Acta Psychol (Amst); 1993 Nov; 84(2):135-59. PubMed ID: 8285077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The eyes prefer targets nearby fixation: Quantifying eccentricity-dependent attentional biases in oculomotor selection.
    van Heusden E; Olivers CNL; Donk M
    Vision Res; 2023 Apr; 205():108177. PubMed ID: 36669432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic Detection of Attention Shifts in Infancy: Eye Tracking in the Fixation Shift Paradigm.
    Kulke L; Atkinson J; Braddick O
    PLoS One; 2015; 10(12):e0142505. PubMed ID: 26625161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Medication adversely impacts visually-guided eye movements in Parkinson's disease.
    Munoz MJ; Reilly JL; Pal GD; Verhagen Metman L; Rivera YM; Drane QH; Corcos DM; David FJ; Goelz LC
    Clin Neurophysiol; 2022 Nov; 143():145-153. PubMed ID: 35995722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Release of fixation for pursuit and saccades in humans: evidence for shared inputs acting on different neural substrates.
    Krauzlis RJ; Miles FA
    J Neurophysiol; 1996 Nov; 76(5):2822-33. PubMed ID: 8930235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Independent contributions of the orienting of attention, fixation offset and bilateral stimulation on human saccadic latencies.
    Walker R; Kentridge RW; Findlay JM
    Exp Brain Res; 1995; 103(2):294-310. PubMed ID: 7789437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural Differences between Covert and Overt Attention Studied using EEG with Simultaneous Remote Eye Tracking.
    Kulke LV; Atkinson J; Braddick O
    Front Hum Neurosci; 2016; 10():592. PubMed ID: 27932962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of eccentricity on attentional capture.
    van Heusden E; Olivers CNL; Donk M
    Atten Percept Psychophys; 2024 Feb; 86(2):422-438. PubMed ID: 37258897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binocular coordination in fore/aft motion.
    Ramat S; Zee DS
    Ann N Y Acad Sci; 2005 Apr; 1039():36-53. PubMed ID: 15826960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient attention does not alter the eccentricity effect in estimation of duration.
    Krug A; Eberhardt LV; Huckauf A
    Atten Percept Psychophys; 2024 Feb; 86(2):392-403. PubMed ID: 37550478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of return in the visual field: the eccentricity effect is independent of cortical magnification.
    Bao Y; Lei Q; Fang Y; Tong Y; Schill K; Pöppel E; Strasburger H
    Exp Psychol; 2013; 60(6):425-31. PubMed ID: 23820946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The location marker effect. Saccadic latency increases with target eccentricity.
    Hodgson TL
    Exp Brain Res; 2002 Aug; 145(4):539-42. PubMed ID: 12172666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.