These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 31740692)
1. Relativistic quantum heat engine from uncertainty relation standpoint. Chattopadhyay P; Paul G Sci Rep; 2019 Nov; 9(1):16967. PubMed ID: 31740692 [TBL] [Abstract][Full Text] [Related]
2. Bound on Efficiency of Heat Engine from Uncertainty Relation Viewpoint. Chattopadhyay P; Mitra A; Paul G; Zarikas V Entropy (Basel); 2021 Apr; 23(4):. PubMed ID: 33918678 [TBL] [Abstract][Full Text] [Related]
3. Bounds on nonequilibrium fluctuations for asymmetrically driven quantum Otto engines. Mohanta S; Saha M; Venkatesh BP; Agarwalla BK Phys Rev E; 2023 Jul; 108(1-1):014118. PubMed ID: 37583162 [TBL] [Abstract][Full Text] [Related]
4. Quantum thermodynamic cycles and quantum heat engines. Quan HT; Liu YX; Sun CP; Nori F Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031105. PubMed ID: 17930197 [TBL] [Abstract][Full Text] [Related]
5. Quantum heat engine in the relativistic limit: the case of a Dirac particle. Muñoz E; Peña FJ Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061108. PubMed ID: 23367894 [TBL] [Abstract][Full Text] [Related]
6. Endoreversible quantum heat engines in the linear response regime. Wang H; He J; Wang J Phys Rev E; 2017 Jul; 96(1-1):012152. PubMed ID: 29347192 [TBL] [Abstract][Full Text] [Related]
7. Space-fractional quantum heat engine based on level degeneracy. Aydiner E Sci Rep; 2021 Sep; 11(1):17901. PubMed ID: 34504180 [TBL] [Abstract][Full Text] [Related]
8. Otto Engine: Classical and Quantum Approach. Peña FJ; Negrete O; Cortés N; Vargas P Entropy (Basel); 2020 Jul; 22(7):. PubMed ID: 33286527 [TBL] [Abstract][Full Text] [Related]
9. Quantum four-stroke heat engine: thermodynamic observables in a model with intrinsic friction. Feldmann T; Kosloff R Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016101. PubMed ID: 12935194 [TBL] [Abstract][Full Text] [Related]
11. Efficiency and its bounds for a quantum Einstein engine at maximum power. Yan H; Guo H Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051135. PubMed ID: 23214766 [TBL] [Abstract][Full Text] [Related]
13. Finite-power performance of quantum heat engines in linear response. Liu Q; He J; Ma Y; Wang J Phys Rev E; 2019 Jul; 100(1-1):012105. PubMed ID: 31499858 [TBL] [Abstract][Full Text] [Related]
14. Quantum Heat Engines with Complex Working Media, Complete Otto Cycles and Heuristics. Johal RS; Mehta V Entropy (Basel); 2021 Sep; 23(9):. PubMed ID: 34573774 [TBL] [Abstract][Full Text] [Related]
15. Quantum Otto heat engine with Pöschl-Teller potential in contact with coherent thermal bath. Abasabadi SH; Mirafzali SY; Baghshahi HR Sci Rep; 2023 Jun; 13(1):10522. PubMed ID: 37386051 [TBL] [Abstract][Full Text] [Related]
16. Quantum heat engine with multilevel quantum systems. Quan HT; Zhang P; Sun CP Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056110. PubMed ID: 16383691 [TBL] [Abstract][Full Text] [Related]
17. Thermodynamic Uncertainty Relation in Slowly Driven Quantum Heat Engines. Miller HJD; Mohammady MH; Perarnau-Llobet M; Guarnieri G Phys Rev Lett; 2021 May; 126(21):210603. PubMed ID: 34114847 [TBL] [Abstract][Full Text] [Related]
18. Spin Quantum Heat Engine Quantified by Quantum Steering. Ji W; Chai Z; Wang M; Guo Y; Rong X; Shi F; Ren C; Wang Y; Du J Phys Rev Lett; 2022 Mar; 128(9):090602. PubMed ID: 35302812 [TBL] [Abstract][Full Text] [Related]
19. Collective effects on the performance and stability of quantum heat engines. Souza LDS; Manzano G; Fazio R; Iemini F Phys Rev E; 2022 Jul; 106(1-1):014143. PubMed ID: 35974546 [TBL] [Abstract][Full Text] [Related]