BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 31740773)

  • 1. Widespread long-range cis-regulatory elements in the maize genome.
    Ricci WA; Lu Z; Ji L; Marand AP; Ethridge CL; Murphy NG; Noshay JM; Galli M; Mejía-Guerra MK; Colomé-Tatché M; Johannes F; Rowley MJ; Corces VG; Zhai J; Scanlon MJ; Buckler ES; Gallavotti A; Springer NM; Schmitz RJ; Zhang X
    Nat Plants; 2019 Dec; 5(12):1237-1249. PubMed ID: 31740773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatin interaction maps reveal genetic regulation for quantitative traits in maize.
    Peng Y; Xiong D; Zhao L; Ouyang W; Wang S; Sun J; Zhang Q; Guan P; Xie L; Li W; Li G; Yan J; Li X
    Nat Commun; 2019 Jun; 10(1):2632. PubMed ID: 31201335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide mapping of transcriptional enhancer candidates using DNA and chromatin features in maize.
    Oka R; Zicola J; Weber B; Anderson SN; Hodgman C; Gent JI; Wesselink JJ; Springer NM; Hoefsloot HCJ; Turck F; Stam M
    Genome Biol; 2017 Jul; 18(1):137. PubMed ID: 28732548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cis-regulatory atlas in maize at single-cell resolution.
    Marand AP; Chen Z; Gallavotti A; Schmitz RJ
    Cell; 2021 May; 184(11):3041-3055.e21. PubMed ID: 33964211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-range interactions between proximal and distal regulatory regions in maize.
    Li E; Liu H; Huang L; Zhang X; Dong X; Song W; Zhao H; Lai J
    Nat Commun; 2019 Jun; 10(1):2633. PubMed ID: 31201330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proliferation of Regulatory DNA Elements Derived from Transposable Elements in the Maize Genome.
    Zhao H; Zhang W; Chen L; Wang L; Marand AP; Wu Y; Jiang J
    Plant Physiol; 2018 Apr; 176(4):2789-2803. PubMed ID: 29463772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The prevalence, evolution and chromatin signatures of plant regulatory elements.
    Lu Z; Marand AP; Ricci WA; Ethridge CL; Zhang X; Schmitz RJ
    Nat Plants; 2019 Dec; 5(12):1250-1259. PubMed ID: 31740772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel pairwise comparison method for in silico discovery of statistically significant cis-regulatory elements in eukaryotic promoter regions: application to Arabidopsis.
    Shamloo-Dashtpagerdi R; Razi H; Aliakbari M; Lindlöf A; Ebrahimi M; Ebrahimie E
    J Theor Biol; 2015 Jan; 364():364-76. PubMed ID: 25303887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic organization and transcriptional regulation of maize ZmRR1 and ZmRR2 encoding cytokinin-inducible response regulators.
    Deji A; Sakakibara H; Ishida Y; Yamada S; Komari T; Kubo T; Sugiyama T
    Biochim Biophys Acta; 2000 Jun; 1492(1):216-20. PubMed ID: 11004492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UNBRANCHED3 Expression and Inflorescence Development is Mediated by UNBRANCHED2 and the Distal Enhancer, KRN4, in Maize.
    Du Y; Liu L; Peng Y; Li M; Li Y; Liu D; Li X; Zhang Z
    PLoS Genet; 2020 Apr; 16(4):e1008764. PubMed ID: 32330129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide characterization of cis-acting DNA targets reveals the transcriptional regulatory framework of opaque2 in maize.
    Li C; Qiao Z; Qi W; Wang Q; Yuan Y; Yang X; Tang Y; Mei B; Lv Y; Zhao H; Xiao H; Song R
    Plant Cell; 2015 Mar; 27(3):532-45. PubMed ID: 25691733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide evolutionary characterization and expression analysis of SIAMESE-RELATED family genes in maize.
    Zhang Z; Qu J; Li F; Li S; Xu S; Zhang R; Xue J; Guo D
    BMC Evol Biol; 2020 Jul; 20(1):91. PubMed ID: 32727363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide identification, splicing, and expression analysis of the myosin gene family in maize (Zea mays).
    Wang G; Zhong M; Wang J; Zhang J; Tang Y; Wang G; Song R
    J Exp Bot; 2014 Mar; 65(4):923-38. PubMed ID: 24363426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide analysis of primary auxin-responsive Aux/IAA gene family in maize (Zea mays. L.).
    Wang Y; Deng D; Bian Y; Lv Y; Xie Q
    Mol Biol Rep; 2010 Dec; 37(8):3991-4001. PubMed ID: 20232157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide identification and characterisation of F-box family in maize.
    Jia F; Wu B; Li H; Huang J; Zheng C
    Mol Genet Genomics; 2013 Nov; 288(11):559-77. PubMed ID: 23928825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigenomic landscape and epigenetic regulation in maize.
    Yu J; Xu F; Wei Z; Zhang X; Chen T; Pu L
    Theor Appl Genet; 2020 May; 133(5):1467-1489. PubMed ID: 31965233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A saturating mutagenesis CRISPR-Cas9-mediated functional genomic screen identifies
    Canver MC; Tripathi P; Bullen MJ; Olshansky M; Kumar Y; Wong LH; Turner SJ; Lessard S; Pinello L; Orkin SH; Das PP
    J Biol Chem; 2020 Nov; 295(47):15797-15809. PubMed ID: 32994224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A large-scale screen for artificial selection in maize identifies candidate agronomic loci for domestication and crop improvement.
    Yamasaki M; Tenaillon MI; Bi IV; Schroeder SG; Sanchez-Villeda H; Doebley JF; Gaut BS; McMullen MD
    Plant Cell; 2005 Nov; 17(11):2859-72. PubMed ID: 16227451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Open chromatin reveals the functional maize genome.
    Rodgers-Melnick E; Vera DL; Bass HW; Buckler ES
    Proc Natl Acad Sci U S A; 2016 May; 113(22):E3177-84. PubMed ID: 27185945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction and validation of cis-regulatory elements in 5' upstream regulatory regions of lectin receptor-like kinase gene family in rice.
    Passricha N; Saifi S; Ansari MW; Tuteja N
    Protoplasma; 2017 Mar; 254(2):669-684. PubMed ID: 27193099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.