BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 31740979)

  • 1. Transformation and toxicity of environmental contaminants as influenced by Fe containing clay minerals: a review.
    Wang Y; Jin X; Peng A; Gu C
    Bull Environ Contam Toxicol; 2020 Jan; 104(1):8-14. PubMed ID: 31740979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of clay minerals on diethyl phthalate degradation in Fenton reactions.
    Chen N; Fang G; Zhou D; Gao J
    Chemosphere; 2016 Dec; 165():52-58. PubMed ID: 27639077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron redox cycling in layered clay minerals and its impact on contaminant dynamics: A review.
    Fan Q; Wang L; Fu Y; Li Q; Liu Y; Wang Z; Zhu H
    Sci Total Environ; 2023 Jan; 855():159003. PubMed ID: 36155041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reducement of cadmium adsorption on clay minerals by the presence of dissolved organic matter from animal manure.
    Zhou W; Ren L; Zhu L
    Environ Pollut; 2017 Apr; 223():247-254. PubMed ID: 28108163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple empirical model for phenanthrene adsorption on soil clay minerals.
    Zhao N; Ju F; Song Q; Pan H; Ling H
    J Hazard Mater; 2022 May; 429():127849. PubMed ID: 35236031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The symbiotic system of sulfate-reducing bacteria and clay-sized fraction of purplish soil strengthens cadmium fixation through iron-bearing minerals.
    Li J; Zhao W; Du H; Guan Y; Ma M; Rennenberg H
    Sci Total Environ; 2022 May; 820():153253. PubMed ID: 35065114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the sorption of azithromycin and levofloxacin to sediments from mineral and organic components.
    Hanamoto S; Ogawa F
    Environ Pollut; 2019 Dec; 255(Pt 1):113180. PubMed ID: 31525559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial biomodification of clay minerals.
    Zhang L; Gadd GM; Li Z
    Adv Appl Microbiol; 2021; 114():111-139. PubMed ID: 33934851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soft X-ray spectromicroscopy study of mineral-organic matter associations in pasture soil clay fractions.
    Chen C; Dynes JJ; Wang J; Karunakaran C; Sparks DL
    Environ Sci Technol; 2014 Jun; 48(12):6678-86. PubMed ID: 24837340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of soil particle size distribution and clay minerals on ammonium nitrogen in weathered crust elution-deposited rare earth tailing.
    Fan X; Xue Q; Liu S; Tang J; Qiao J; Huang Y; Sun J; Liu N
    Ecotoxicol Environ Saf; 2021 Jan; 208():111663. PubMed ID: 33396173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fate of Cd during mineral transformation by sulfate-reducing bacteria in clay-size fractions from soils with high geochemical background.
    Yan X; Guan DX; Li J; Song Y; Tao H; Zhang X; Ma M; Ji J; Zhao W
    J Hazard Mater; 2023 Oct; 459():132213. PubMed ID: 37549581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soil solid-phase organic matter-mediated microbial reduction of iron minerals increases with land use change sequence from fallow to paddy fields.
    Tan W; Yuan Y; Zhao X; Dang Q; Yuan Y; Li R; Cui D; Xi B
    Sci Total Environ; 2019 Aug; 676():378-386. PubMed ID: 31048168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of inorganic and organic components to sorption of neutral and ionizable pharmaceuticals by sediment/soil.
    Yamamoto H; Takemoto K; Tamura I; Shin-Oka N; Nakano T; Nishida M; Honda Y; Moriguchi S; Nakamura Y
    Environ Sci Pollut Res Int; 2018 Mar; 25(8):7250-7261. PubMed ID: 27005278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation of bioreduced iron-bearing clay mineral triggers arsenic immobilization.
    Zhao Z; Yuan Q; Meng Y; Luan F
    Environ Sci Pollut Res Int; 2022 Jun; 29(29):44874-44882. PubMed ID: 35138538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of surface coatings on electrochemical properties and contaminant sorption of clay minerals.
    Zhuang J; Yu GR
    Chemosphere; 2002 Nov; 49(6):619-28. PubMed ID: 12430649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in clay minerals for groundwater pollution control and remediation.
    Hu S; Liu Y; Wei L; Luo D; Wu Q; Huang X; Xiao T
    Environ Sci Pollut Res Int; 2024 Apr; 31(17):24724-24744. PubMed ID: 38503955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abiotic transformation of perchloroethylene in homogeneous dithionite solution and in suspensions of dithionite-treated clay minerals.
    Nzengung VA; Castillo RM; Gates WP; Mills GL
    Environ Sci Technol; 2001 Jun; 35(11):2244-51. PubMed ID: 11414025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screening the main factors affecting phthalate esters adsorption on soils, humic acid, and clay organo-mineral complexes.
    Xue C; Peng L; Tang J; Lei M; Chen A; Shao J; Luo S; Mu Y
    Ecotoxicol Environ Saf; 2020 Mar; 190():109143. PubMed ID: 31865203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial reduction of Fe(III)-bearing clay minerals in the presence of humic acids.
    Liu G; Qiu S; Liu B; Pu Y; Gao Z; Wang J; Jin R; Zhou J
    Sci Rep; 2017 Mar; 7():45354. PubMed ID: 28358048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactivity of Fe(II)-bearing minerals toward reductive transformation of organic contaminants.
    Elsner M; Schwarzenbach RP; Haderlein SB
    Environ Sci Technol; 2004 Feb; 38(3):799-807. PubMed ID: 14968867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.