These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 31741062)

  • 1. Stable transformation of unicellular green alga Coccomyxa subellipsoidea C-169 via electroporation.
    Kania K; Zienkiewicz M; Drożak A
    Protoplasma; 2020 Mar; 257(2):607-611. PubMed ID: 31741062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of temperature conditions during growth on the transformation frequency of
    Kania K; Levytska A; Drożak A; Andrzej B; Paweł D; Zienkiewicz M
    Biochem Biophys Rep; 2022 Jul; 30():101220. PubMed ID: 35198739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation.
    Blanc G; Agarkova I; Grimwood J; Kuo A; Brueggeman A; Dunigan DD; Gurnon J; Ladunga I; Lindquist E; Lucas S; Pangilinan J; Pröschold T; Salamov A; Schmutz J; Weeks D; Yamada T; Lomsadze A; Borodovsky M; Claverie JM; Grigoriev IV; Van Etten JL
    Genome Biol; 2012 May; 13(5):R39. PubMed ID: 22630137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Convenient transformation of anamorphic basidiomycetous yeasts belonging to genus pseudozyma induced by electroporation.
    Morita T; Habe H; Fukuoka T; Imura T; Kitamoto D
    J Biosci Bioeng; 2007 Dec; 104(6):517-20. PubMed ID: 18215641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Agrobacterium-mediated and electroporation-mediated transformation of Chlamydomonas reinhardtii: a comparative study.
    Mini P; Demurtas OC; Valentini S; Pallara P; Aprea G; Ferrante P; Giuliano G
    BMC Biotechnol; 2018 Feb; 18(1):11. PubMed ID: 29454346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The transformation of the unicellular alga Chlamydomonas reinhardtii by electroporation].
    Ladygin VG
    Mikrobiologiia; 2003; 72(5):658-65. PubMed ID: 14679905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The potential growth and lipid accumulation in Coccomyxa subellipsoidea triggered by glucose combining with sodium acetate.
    Wang Z; Luo F; Wang Z; Zhou R; Tang Y; Li Y
    World J Microbiol Biotechnol; 2019 Jul; 35(7):110. PubMed ID: 31280381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-efficiency nuclear transformation of the diatom Phaeodactylum tricornutum by electroporation.
    Zhang C; Hu H
    Mar Genomics; 2014 Aug; 16():63-6. PubMed ID: 24269346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear transformation and functional gene expression in the oleaginous microalga Monoraphidium neglectum.
    Jaeger D; Hübner W; Huser T; Mussgnug JH; Kruse O
    J Biotechnol; 2017 May; 249():10-15. PubMed ID: 28302588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of temperature acclimatisation in the psychrotolerant green alga Coccomyxa subellipsoidea C-169 (Trebouxiophyceae).
    Kania K; Drożak A; Borkowski A; Działak P; Majcher K; Sawicka PD; Zienkiewicz M
    Physiol Plant; 2023; 175(5):e14034. PubMed ID: 37882306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The augmented lipid productivity in an emerging oleaginous model alga Coccomyxa subellipsoidea by nitrogen manipulation strategy.
    Wang C; Wang Z; Luo F; Li Y
    World J Microbiol Biotechnol; 2017 Aug; 33(8):160. PubMed ID: 28752265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localization and dimer stability of a newly identified microbial rhodopsin from a polar, non-motile green algae.
    Ranjan P; Kateriya S
    BMC Res Notes; 2018 Jan; 11(1):65. PubMed ID: 29361974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrogen-assisted lipid production by biofilms of aerial microalga Coccomyxa subellipsoidea KGU-D001 in the aerial phase.
    Aburai N; Kitajima E; Morita R; Fujii K
    Arch Microbiol; 2023 Jan; 205(2):60. PubMed ID: 36624247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High efficiency transformation by electroporation of the freshwater alga Nannochloropsis limnetica.
    Chen Y; Hu H
    World J Microbiol Biotechnol; 2019 Jul; 35(8):119. PubMed ID: 31332541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chloramphenicol acetyltransferase-a new selectable marker in stable nuclear transformation of the red alga Cyanidioschyzon merolae.
    Zienkiewicz M; Krupnik T; Drożak A; Golke A; Romanowska E
    Protoplasma; 2017 Jan; 254(1):587-596. PubMed ID: 26715590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient transformation of the osmotolerant yeast Zygosaccharomyces rouxii by electroporation.
    Pribylova L; Sychrova H
    J Microbiol Methods; 2003 Nov; 55(2):481-4. PubMed ID: 14529972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CsubMADS1, a lag phase transcription factor, controls development of polar eukaryotic microalga Coccomyxa subellipsoidea C-169.
    Nayar S; Thangavel G
    Plant J; 2021 Aug; 107(4):1228-1242. PubMed ID: 34160095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of technical conditions for the transformation of Lactobacillus acidophilus strains by electroporation.
    Kim YH; Han KS; Oh S; You S; Kim SH
    J Appl Microbiol; 2005; 99(1):167-74. PubMed ID: 15960677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Selectable Markers for Volvox carteri Transformation.
    Ortega-Escalante JA; Kwok O; Miller SM
    Protist; 2019 Feb; 170(1):52-63. PubMed ID: 30576875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Droplet electroporation in microfluidics for efficient cell transformation with or without cell wall removal.
    Qu B; Eu YJ; Jeong WJ; Kim DP
    Lab Chip; 2012 Nov; 12(21):4483-8. PubMed ID: 22976563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.