These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
349 related articles for article (PubMed ID: 31741126)
1. Machine learning-based quantitative texture analysis of conventional MRI combined with ADC maps for assessment of IDH1 mutation in high-grade gliomas. Alis D; Bagcilar O; Senli YD; Yergin M; Isler C; Kocer N; Islak C; Kizilkilic O Jpn J Radiol; 2020 Feb; 38(2):135-143. PubMed ID: 31741126 [TBL] [Abstract][Full Text] [Related]
2. Noninvasive Prediction of IDH1 Mutation and ATRX Expression Loss in Low-Grade Gliomas Using Multiparametric MR Radiomic Features. Ren Y; Zhang X; Rui W; Pang H; Qiu T; Wang J; Xie Q; Jin T; Zhang H; Chen H; Zhang Y; Lu H; Yao Z; Zhang J; Feng X J Magn Reson Imaging; 2019 Mar; 49(3):808-817. PubMed ID: 30194745 [TBL] [Abstract][Full Text] [Related]
3. Qualitative and Quantitative MRI Analysis in IDH1 Genotype Prediction of Lower-Grade Gliomas: A Machine Learning Approach. Cao M; Suo S; Zhang X; Wang X; Xu J; Yang W; Zhou Y Biomed Res Int; 2021; 2021():1235314. PubMed ID: 33553421 [TBL] [Abstract][Full Text] [Related]
4. Combined texture analysis of diffusion-weighted imaging with conventional MRI for non-invasive assessment of IDH1 mutation in anaplastic gliomas. Su CQ; Lu SS; Zhou MD; Shen H; Shi HB; Hong XN Clin Radiol; 2019 Feb; 74(2):154-160. PubMed ID: 30391048 [TBL] [Abstract][Full Text] [Related]
5. Whole-Tumor Histogram and Texture Analyses of DTI for Evaluation of Park YW; Han K; Ahn SS; Choi YS; Chang JH; Kim SH; Kang SG; Kim EH; Lee SK AJNR Am J Neuroradiol; 2018 Apr; 39(4):693-698. PubMed ID: 29519794 [TBL] [Abstract][Full Text] [Related]
6. MRI texture analysis based on 3D tumor measurement reflects the IDH1 mutations in gliomas - A preliminary study. Han L; Wang S; Miao Y; Shen H; Guo Y; Xie L; Shang Y; Dong J; Li X; Wang W; Song Q Eur J Radiol; 2019 Mar; 112():169-179. PubMed ID: 30777207 [TBL] [Abstract][Full Text] [Related]
7. MRI Radiomic Features to Predict IDH1 Mutation Status in Gliomas: A Machine Learning Approach using Gradient Tree Boosting. Sakai Y; Yang C; Kihira S; Tsankova N; Khan F; Hormigo A; Lai A; Cloughesy T; Nael K Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33121211 [TBL] [Abstract][Full Text] [Related]
8. Glioma grading and IDH1 mutational status: assessment by intravoxel incoherent motion MRI. Wang X; Chen XZ; Shi L; Dai JP Clin Radiol; 2019 Aug; 74(8):651.e7-651.e14. PubMed ID: 31014573 [TBL] [Abstract][Full Text] [Related]
9. The diagnostic value of quantitative texture analysis of conventional MRI sequences using artificial neural networks in grading gliomas. Alis D; Bagcilar O; Senli YD; Isler C; Yergin M; Kocer N; Islak C; Kizilkilic O Clin Radiol; 2020 May; 75(5):351-357. PubMed ID: 31973941 [TBL] [Abstract][Full Text] [Related]
10. Machine learning reveals multimodal MRI patterns predictive of isocitrate dehydrogenase and 1p/19q status in diffuse low- and high-grade gliomas. Zhou H; Chang K; Bai HX; Xiao B; Su C; Bi WL; Zhang PJ; Senders JT; Vallières M; Kavouridis VK; Boaro A; Arnaout O; Yang L; Huang RY J Neurooncol; 2019 Apr; 142(2):299-307. PubMed ID: 30661193 [TBL] [Abstract][Full Text] [Related]
11. Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma. Kim M; Jung SY; Park JE; Jo Y; Park SY; Nam SJ; Kim JH; Kim HS Eur Radiol; 2020 Apr; 30(4):2142-2151. PubMed ID: 31828414 [TBL] [Abstract][Full Text] [Related]
12. Brain T1ρ mapping for grading and IDH1 gene mutation detection of gliomas: a preliminary study. Cao M; Ding W; Han X; Suo S; Sun Y; Wang Y; Qu J; Zhang X; Zhou Y J Neurooncol; 2019 Jan; 141(1):245-252. PubMed ID: 30414094 [TBL] [Abstract][Full Text] [Related]
13. Noninvasive IDH1 mutation estimation based on a quantitative radiomics approach for grade II glioma. Yu J; Shi Z; Lian Y; Li Z; Liu T; Gao Y; Wang Y; Chen L; Mao Y Eur Radiol; 2017 Aug; 27(8):3509-3522. PubMed ID: 28004160 [TBL] [Abstract][Full Text] [Related]
14. Intravoxel incoherent motion magnetic resonance imaging in predicting IDH1 gene mutations in high-grade gliomas. Wang C; Dong H Acta Radiol; 2021 Oct; 62(10):1412-1417. PubMed ID: 33951927 [TBL] [Abstract][Full Text] [Related]
15. Multimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomas. Zhang B; Chang K; Ramkissoon S; Tanguturi S; Bi WL; Reardon DA; Ligon KL; Alexander BM; Wen PY; Huang RY Neuro Oncol; 2017 Jan; 19(1):109-117. PubMed ID: 27353503 [TBL] [Abstract][Full Text] [Related]
16. Volume-based histogram analysis of dynamic contrast-enhanced MRI for estimation of gliomas IDH1 mutation status. Hu Y; Zhang N; Yu MH; Zhou XJ; Ge M; Shen DD; Hua Y; Shi JL; Jia ZZ Eur J Radiol; 2020 Oct; 131():109247. PubMed ID: 32891974 [TBL] [Abstract][Full Text] [Related]
17. T2-FLAIR mismatch sign and machine learning-based multiparametric MRI radiomics in predicting IDH mutant 1p/19q non-co-deleted diffuse lower-grade gliomas. Tang WT; Su CQ; Lin J; Xia ZW; Lu SS; Hong XN Clin Radiol; 2024 May; 79(5):e750-e758. PubMed ID: 38360515 [TBL] [Abstract][Full Text] [Related]
18. Radiomics-Based Machine Learning Classification for Glioma Grading Using Diffusion- and Perfusion-Weighted Magnetic Resonance Imaging. Hashido T; Saito S; Ishida T J Comput Assist Tomogr; 2021 Jul-Aug 01; 45(4):606-613. PubMed ID: 34270479 [TBL] [Abstract][Full Text] [Related]
19. Machine learning and radiomic phenotyping of lower grade gliomas: improving survival prediction. Choi YS; Ahn SS; Chang JH; Kang SG; Kim EH; Kim SH; Jain R; Lee SK Eur Radiol; 2020 Jul; 30(7):3834-3842. PubMed ID: 32162004 [TBL] [Abstract][Full Text] [Related]
20. Advanced imaging parameters improve the prediction of diffuse lower-grade gliomas subtype, IDH mutant with no 1p19q codeletion: added value to the T2/FLAIR mismatch sign. Lee MK; Park JE; Jo Y; Park SY; Kim SJ; Kim HS Eur Radiol; 2020 Feb; 30(2):844-854. PubMed ID: 31446467 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]