These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Discarded Wharton jelly of the human umbilical cord: a viable source for mesenchymal stromal cells. Watson N; Divers R; Kedar R; Mehindru A; Mehindru A; Borlongan MC; Borlongan CV Cytotherapy; 2015 Jan; 17(1):18-24. PubMed ID: 25442786 [TBL] [Abstract][Full Text] [Related]
23. The effect of fibroblast growth factor on distinct differentiation potential of cord blood-derived unrestricted somatic stem cells and Wharton's jelly-derived mesenchymal stem/stromal cells. Lee S; Park BJ; Kim JY; Jekarl D; Choi HY; Lee SY; Kim M; Kim Y; Park MS Cytotherapy; 2015 Dec; 17(12):1723-31. PubMed ID: 26589753 [TBL] [Abstract][Full Text] [Related]
24. Mesenchymal stem cells derived from Wharton's jelly: comparative phenotype analysis between tissue and in vitro expansion. Margossian T; Reppel L; Makdissy N; Stoltz JF; Bensoussan D; Huselstein C Biomed Mater Eng; 2012; 22(4):243-54. PubMed ID: 22785368 [TBL] [Abstract][Full Text] [Related]
25. Mesenchymal stromal cells from umbilical cord Wharton's jelly trigger oligodendroglial differentiation in neural progenitor cells through cell-to-cell contact. Oppliger B; Joerger-Messerli MS; Simillion C; Mueller M; Surbek DV; Schoeberlein A Cytotherapy; 2017 Jul; 19(7):829-838. PubMed ID: 28457739 [TBL] [Abstract][Full Text] [Related]
26. DMSO- and Serum-Free Cryopreservation of Wharton's Jelly Tissue Isolated From Human Umbilical Cord. Shivakumar SB; Bharti D; Subbarao RB; Jang SJ; Park JS; Ullah I; Park JK; Byun JH; Park BW; Rho GJ J Cell Biochem; 2016 Oct; 117(10):2397-412. PubMed ID: 27038129 [TBL] [Abstract][Full Text] [Related]
27. Increased internalization of Staphylococcus aureus and cytokine expression in human Wharton's jelly mesenchymal stem cells. Josse J; Velard F; Mechiche Alami S; Brun V; Guillaume C; Kerdjoudj H; Lamkhioued B; Gangloff SC Biomed Mater Eng; 2014; 24(1 Suppl):27-35. PubMed ID: 24928915 [TBL] [Abstract][Full Text] [Related]
28. A simple and serum-free protocol for cryopreservation of human umbilical cord as source of Wharton's jelly mesenchymal stem cells. Roy S; Arora S; Kumari P; Ta M Cryobiology; 2014 Jun; 68(3):467-72. PubMed ID: 24704519 [TBL] [Abstract][Full Text] [Related]
29. Role of Nonmuscle Myosin II in Migration of Wharton's Jelly-Derived Mesenchymal Stem Cells. Arora S; Saha S; Roy S; Das M; Jana SS; Ta M Stem Cells Dev; 2015 Sep; 24(17):2065-77. PubMed ID: 25923805 [TBL] [Abstract][Full Text] [Related]
30. Wharton's Jelly Mesenchymal Stromal Cells as a Feeder Layer for the Ex Vivo Expansion of Hematopoietic Stem and Progenitor Cells: a Review. Lo Iacono M; Anzalone R; La Rocca G; Baiamonte E; Maggio A; Acuto S Stem Cell Rev Rep; 2017 Feb; 13(1):35-49. PubMed ID: 27853939 [TBL] [Abstract][Full Text] [Related]
31. Positive selection of Wharton's jelly-derived CD105(+) cells by MACS technique and their subsequent cultivation under suspension culture condition: A simple, versatile culturing method to enhance the multipotentiality of mesenchymal stem cells. Amiri F; Halabian R; Dehgan Harati M; Bahadori M; Mehdipour A; Mohammadi Roushandeh A; Habibi Roudkenar M Hematology; 2015 May; 20(4):208-16. PubMed ID: 25116042 [TBL] [Abstract][Full Text] [Related]
32. Molecular and Functional Verification of Wharton's Jelly Mesenchymal Stem Cells (WJ-MSCs) Pluripotency. Musiał-Wysocka A; Kot M; Sułkowski M; Badyra B; Majka M Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31013696 [TBL] [Abstract][Full Text] [Related]
33. Adipose-tissue-derived and Wharton's jelly-derived mesenchymal stromal cells suppress lymphocyte responses by secreting leukemia inhibitory factor. Najar M; Raicevic G; Boufker HI; Fayyad-Kazan H; De Bruyn C; Meuleman N; Bron D; Toungouz M; Lagneaux L Tissue Eng Part A; 2010 Nov; 16(11):3537-46. PubMed ID: 20597819 [TBL] [Abstract][Full Text] [Related]
35. Pluripotent gene expression in mesenchymal stem cells from human umbilical cord Wharton's jelly and their differentiation potential to neural-like cells. Tantrawatpan C; Manochantr S; Kheolamai P; U-Pratya Y; Supokawej A; Issaragrisil S J Med Assoc Thai; 2013 Sep; 96(9):1208-17. PubMed ID: 24163998 [TBL] [Abstract][Full Text] [Related]
36. Increased proliferation and analysis of differential gene expression in human Wharton's jelly-derived mesenchymal stromal cells under hypoxia. Nekanti U; Dastidar S; Venugopal P; Totey S; Ta M Int J Biol Sci; 2010 Sep; 6(5):499-512. PubMed ID: 20877435 [TBL] [Abstract][Full Text] [Related]
37. Maternal and neonatal factors' effects on wharton's jelly mesenchymal stem cell yield. Mahmoud R; Bassiouny M; Badawy A; Darwish A; Yahia S; El-Tantawy N Sci Rep; 2024 Oct; 14(1):24376. PubMed ID: 39420012 [TBL] [Abstract][Full Text] [Related]
38. Impact of Graphene-Based Surfaces on the Basic Biological Properties of Human Umbilical Cord Mesenchymal Stem Cells: Implications for Ex Vivo Cell Expansion Aimed at Tissue Repair. Jagiełło J; Sekuła-Stryjewska M; Noga S; Adamczyk E; Dźwigońska M; Kurcz M; Kurp K; Winkowska-Struzik M; Karnas E; Boruczkowski D; Madeja Z; Lipińska L; Zuba-Surma EK Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31540083 [TBL] [Abstract][Full Text] [Related]
39. Human Platelet Lysate Supports Efficient Expansion and Stability of Wharton's Jelly Mesenchymal Stromal Cells via Active Uptake and Release of Soluble Regenerative Factors. Cañas-Arboleda M; Beltrán K; Medina C; Camacho B; Salguero G Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32877987 [TBL] [Abstract][Full Text] [Related]