BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 31741386)

  • 21. Enhancing the efficiency and stability of perovskite solar cells based on moisture-resistant dopant free hole transport materials by using a 2D-BA
    Ghoreishi FS; Ahmadi V; Alidaei M; Arabpour Roghabadi F; Samadpour M; Poursalehi R; Johansson EMJ
    Phys Chem Chem Phys; 2022 Jan; 24(3):1675-1684. PubMed ID: 34982079
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Insulated Interlayer for Efficient and Photostable Electron-Transport-Layer-Free Perovskite Solar Cells.
    Zhao P; Han M; Yin W; Zhao X; Kim SG; Yan Y; Kim M; Song YJ; Park NG; Jung HS
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):10132-10140. PubMed ID: 29509405
    [TBL] [Abstract][Full Text] [Related]  

  • 23. All-vacuum deposited and thermally stable perovskite solar cells with F4-TCNQ/CuPc hole transport layer.
    Arivazhagan V; Hang P; Parvathi MM; Tang Z; Khan A; Yang D; Yu X
    Nanotechnology; 2020 Jan; 31(6):065401. PubMed ID: 31627206
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In Situ Back-Contact Passivation Improves Photovoltage and Fill Factor in Perovskite Solar Cells.
    Tan F; Tan H; Saidaminov MI; Wei M; Liu M; Mei A; Li P; Zhang B; Tan CS; Gong X; Zhao Y; Kirmani AR; Huang Z; Fan JZ; Quintero-Bermudez R; Kim J; Zhao Y; Voznyy O; Gao Y; Zhang F; Richter LJ; Lu ZH; Zhang W; Sargent EH
    Adv Mater; 2019 Apr; 31(14):e1807435. PubMed ID: 30740780
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tailoring Molecular-Scale Contact at the Perovskite/Polymeric Hole-Transporting Material Interface for Efficient Solar Cells.
    Sun J; Ma K; Lin ZY; Tang Y; Varadharajan D; Chen AX; Atapattu HR; Lee YH; Chen K; Boudouris BW; Graham KR; Lipomi DJ; Mei J; Savoie BM; Dou L
    Adv Mater; 2023 Jun; 35(26):e2300647. PubMed ID: 36942854
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interfacial Passivation of the p-Doped Hole-Transporting Layer Using General Insulating Polymers for High-Performance Inverted Perovskite Solar Cells.
    Zhang F; Song J; Hu R; Xiang Y; He J; Hao Y; Lian J; Zhang B; Zeng P; Qu J
    Small; 2018 May; 14(19):e1704007. PubMed ID: 29638030
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20.
    Arora N; Dar MI; Hinderhofer A; Pellet N; Schreiber F; Zakeeruddin SM; Grätzel M
    Science; 2017 Nov; 358(6364):768-771. PubMed ID: 28971968
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Formation of Highly Efficient Perovskite Solar Cells by Applying Li-Doped CuSCN Hole Conductor and Interface Treatment.
    Yang IS; Park YJ; Hwang Y; Yang HC; Kim J; Lee WI
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432255
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of Self-Assembled Monolayer Modification of Nickel Oxide Nanoparticles Layer on the Performance and Application of Inverted Perovskite Solar Cells.
    Wang Q; Chueh CC; Zhao T; Cheng J; Eslamian M; Choy WCH; Jen AK
    ChemSusChem; 2017 Oct; 10(19):3794-3803. PubMed ID: 28881441
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gelation of Hole Transport Layer to Improve the Stability of Perovskite Solar Cells.
    Zhang Y; Zhou C; Lin L; Pei F; Xiao M; Yang X; Yuan G; Zhu C; Chen Y; Chen Q
    Nanomicro Lett; 2023 Jul; 15(1):175. PubMed ID: 37428245
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Organic Monomolecular Layers Enable Energy-Level Matching for Efficient Hole Transporting Layer Free Inverted Perovskite Solar Cells.
    Kong W; Li W; Liu C; Liu H; Miao J; Wang W; Chen S; Hu M; Li D; Amini A; Yang S; Wang J; Xu B; Cheng C
    ACS Nano; 2019 Feb; 13(2):1625-1634. PubMed ID: 30673271
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In-Situ Self-Assembly Dipole Shielding Layer Toward Efficient and Stable Inorganic Perovskite Solar Cells.
    Zhan M; Yuan S; Wu W; Wang M; Yang W; Xiong H; Tan Z; Li W; Fan J
    Small; 2024 May; ():e2402997. PubMed ID: 38794867
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Poly(N,N'-bis-4-butylphenyl-N,N'-bisphenyl)benzidine-Based Interfacial Passivation Strategy Promoting Efficiency and Operational Stability of Perovskite Solar Cells in Regular Architecture.
    Akman E; Akin S
    Adv Mater; 2021 Jan; 33(2):e2006087. PubMed ID: 33289215
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Azadipyrromethene Dye-Assisted Defect Passivation for Efficient and Stable Perovskite Solar Cells.
    Feng Z; Wu Z; Hua Y; Weng C; Chen X; Huang S
    ACS Appl Mater Interfaces; 2022 Mar; 14(12):14388-14399. PubMed ID: 35296134
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In Situ Thermal Cross-Linking of 9,9'-Spirobifluorene-Based Hole-Transporting Layer for Perovskite Solar Cells.
    Daskeviciute-Geguziene S; Truong MA; Rakstys K; Daskeviciene M; Hashimoto R; Murdey R; Yamada T; Kanemitsu Y; Jankauskas V; Wakamiya A; Getautis V
    ACS Appl Mater Interfaces; 2024 Jan; 16(1):1206-1216. PubMed ID: 38117238
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3 D NiO Nanowall Hole-Transporting Layer for the Passivation of Interfacial Contact in Inverted Perovskite Solar Cells.
    Yin X; Zhai J; Du P; Li N; Song L; Xiong J; Ko F
    ChemSusChem; 2020 Mar; 13(5):1006-1012. PubMed ID: 31898849
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mitigating the Internal Ion Migration of Organic-Inorganic Hybrid Perovskite by a Graphene Oxide Interlayer.
    Wang C; Dou Y; Wang Y; Huang F; Ku Z; Lu J; Cheng YB
    ACS Appl Mater Interfaces; 2022 May; 14(19):22601-22606. PubMed ID: 35533087
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bifacial Passivation of Organic Hole Transport Interlayer for NiO
    Li Z; Jo BH; Hwang SJ; Kim TH; Somasundaram S; Kamaraj E; Bang J; Ahn TK; Park S; Park HJ
    Adv Sci (Weinh); 2019 Mar; 6(6):1802163. PubMed ID: 30937277
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Excellent Moisture Stability and Efficiency of Inverted All-Inorganic CsPbIBr
    Yang S; Wang L; Gao L; Cao J; Han Q; Yu F; Kamata Y; Zhang C; Fan M; Wei G; Ma T
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):13931-13940. PubMed ID: 32119775
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Grain Enlargement and Defect Passivation with Melamine Additives for High Efficiency and Stable CsPbBr
    Zhu J; He B; Gong Z; Ding Y; Zhang W; Li X; Zong Z; Chen H; Tang Q
    ChemSusChem; 2020 Apr; 13(7):1834-1843. PubMed ID: 31971332
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.