BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

38 related articles for article (PubMed ID: 31741408)

  • 1. New daphnane diterpenoidal 1,3,4-oxdiazole derivatives as potential anti-hepatoma agents: Synthesis, biological evaluation and molecular modeling studies.
    Wang X; Wang Y; Liu Z; Zhao H; Yao GD; Liu Q; Song SJ
    Bioorg Chem; 2024 Apr; 145():107208. PubMed ID: 38354501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computer-aided insight into the identification of significant therapeutic flavone as a promising agent for sarcopenic obesity.
    Sabarathinam S; Satheesh S; Raja A
    Nat Prod Res; 2024 Jun; 38(12):2091-2096. PubMed ID: 37436875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Network Pharmacology-Based Strategy to Investigate the Pharmacologic Mechanisms of
    Yang S; Zhang J; Yan Y; Yang M; Li C; Li J; Zhong L; Gong Q; Yu H
    Front Pharmacol; 2019; 10():1629. PubMed ID: 32063848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systems pharmacology-based study of Tanreqing injection in airway mucus hypersecretion.
    Liu W; Zhang X; Mao B; Jiang H
    J Ethnopharmacol; 2020 Mar; 249():112425. PubMed ID: 31765763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Network pharmacology and molecular docking reveal the mechanism of Scopoletin against non-small cell lung cancer.
    Yuan C; Wang MH; Wang F; Chen PY; Ke XG; Yu B; Yang YF; You PT; Wu HZ
    Life Sci; 2021 Apr; 270():119105. PubMed ID: 33497736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilizing network pharmacology to explore potential mechanisms of YiSui NongJian formula in treating myelodysplastic syndrome.
    Qin L; Chen H; Ding X; Guo M; Lang H; Liu J; Li L; Liao J; Liao J
    Bioengineered; 2021 Dec; 12(1):2238-2252. PubMed ID: 34098848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the mechanism of Shenqisherong pill against cervical spondylotic myelopathy by network pharmacology and molecular docking.
    Li G; Sun YL; Sng KS; Zheng Z; Wang YJ; Yao M; Cui XJ
    Ann Palliat Med; 2021 Oct; 10(10):10253-10275. PubMed ID: 34498478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Network pharmacology-based analysis in determining the mechanisms of Huoxin pill in protecting against myocardial infarction.
    He J; Wo D; Ma E; Wang Q; Chen J; Peng J; Zhu W; Ren DN
    Pharm Biol; 2021 Dec; 59(1):1191-1202. PubMed ID: 34493157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A network pharmacology study with molecular docking to investigate the possibility of licorice against posttraumatic stress disorder.
    Qiu ZK; Liu ZT; Pang JL; Wu HB; Liu X; Yang ZM; Li X; Chen JS
    Metab Brain Dis; 2021 Oct; 36(7):1763-1777. PubMed ID: 34417940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A network pharmacology analysis on drug-like compounds from Ganoderma lucidum for alleviation of atherosclerosis.
    Oh KK; Adnan M; Cho DH
    J Food Biochem; 2021 Sep; 45(9):e13906. PubMed ID: 34409623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Network Pharmacology Prediction and Molecular Docking-Based Strategy to Discover the Potential Pharmacological Mechanism of Huai Hua San Against Ulcerative Colitis.
    Liu J; Liu J; Tong X; Peng W; Wei S; Sun T; Wang Y; Zhang B; Li W
    Drug Des Devel Ther; 2021; 15():3255-3276. PubMed ID: 34349502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A network pharmacology strategy to investigate the anti-osteoarthritis mechanism of main lignans components of Schisandrae Fructus.
    Min L; Wu Y; Cao G; Mi D; Chen C
    Int Immunopharmacol; 2021 Sep; 98():107873. PubMed ID: 34182246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network pharmacology and molecular docking analysis on molecular targets: Mechanisms of baicalin and baicalein against hyperuricemic nephropathy.
    Xiang H; Lei H; Liu Z; Liu Y; Li Y; Qiu Y; Xu L
    Toxicol Appl Pharmacol; 2021 Aug; 424():115594. PubMed ID: 34044073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The pathogenesis of liver cancer and the therapeutic potential of bioactive substances.
    Gao S; Jiang X; Wang L; Jiang S; Luo H; Chen Y; Peng C
    Front Pharmacol; 2022; 13():1029601. PubMed ID: 36278230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Network pharmacology predicted HDAC6 as a potential target of flavones from
    Chen JJ; Shang XY; Han FY; Zhang Y; Zhao D; Yao GD; Song SJ
    Nat Prod Res; 2021 Sep; 35(18):3171-3175. PubMed ID: 31741408
    [No Abstract]   [Full Text] [Related]  

  • 16. Daphnegiravone D from Daphne giraldii Nitsche induces p38-dependent apoptosis via oxidative and nitrosative stress in hepatocellular carcinoma cells.
    Shang XY; Chen JJ; Song XY; Wang W; Chen Y; Yao GD; Song SJ
    Biomed Pharmacother; 2018 Nov; 107():1426-1433. PubMed ID: 30257359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Daphne giraldii Nitsche (Thymelaeaceae): Phytochemistry, pharmacology and medicinal uses.
    Han S; Li LZ; Song SJ
    Phytochemistry; 2020 Mar; 171():112231. PubMed ID: 31901473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Daphnegiravone D from Daphne giraldii induces cell death by targeting ATR in Hep3B cells.
    Shang XY; Yu XQ; Yao GD; Song SJ
    Bioorg Chem; 2021 May; 110():104802. PubMed ID: 33730672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytotoxic prenylated flavones from the stem and root bark of Daphne giraldii.
    Sun Q; Wang D; Li FF; Yao GD; Li X; Li LZ; Huang XX; Song SJ
    Bioorg Med Chem Lett; 2016 Aug; 26(16):3968-72. PubMed ID: 27400887
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.