These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 31741478)

  • 41. Characterization of Transition to Turbulence for Blood in a Straight Pipe Under Steady Flow Conditions.
    Biswas D; Casey DM; Crowder DC; Steinman DA; Yun YH; Loth F
    J Biomech Eng; 2016 Jul; 138(7):. PubMed ID: 27109010
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Accurate prediction of wall shear stress in a stented artery: newtonian versus non-newtonian models.
    Mejia J; Mongrain R; Bertrand OF
    J Biomech Eng; 2011 Jul; 133(7):074501. PubMed ID: 21823750
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Numerical study for blood rheology inside an artery: The effects of stenosis and radius on the flow behavior.
    Foong LK; Zarringhalam M; Toghraie D; Izadpanahi N; Yan SR; Rostami S
    Comput Methods Programs Biomed; 2020 Sep; 193():105457. PubMed ID: 32283389
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A mathematical model for blood flow through an arterial bifurcation.
    Tandon PN; Kawahara M; Rana UV
    Int J Biomed Comput; 1994 May; 35(4):309-25. PubMed ID: 8063457
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Non-Newtonian blood flow in human right coronary arteries: transient simulations.
    Johnston BM; Johnston PR; Corney S; Kilpatrick D
    J Biomech; 2006; 39(6):1116-28. PubMed ID: 16549100
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development of a general method for designing microvascular networks using distribution of wall shear stress.
    Sayed Razavi M; Shirani E
    J Biomech; 2013 Sep; 46(13):2303-9. PubMed ID: 23891174
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Computational model of blood flow in the aorto-coronary bypass graft.
    Sankaranarayanan M; Chua LP; Ghista DN; Tan YS
    Biomed Eng Online; 2005 Mar; 4():14. PubMed ID: 15745458
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Experimental analysis of unsteady flows through a stenosis.
    Siouffi M; Deplano V; PĂ©lissier R
    J Biomech; 1998 Jan; 31(1):11-9. PubMed ID: 9596533
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A numerical study on hemodynamics in the left coronary bifurcation with normal and hypertension conditions.
    Bahrami S; Norouzi M
    Biomech Model Mechanobiol; 2018 Dec; 17(6):1785-1796. PubMed ID: 30027356
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Non-newtonian behavior of blood and parietal shear stress in a Poiseuille flow].
    Wang X; Stoltz JF
    J Mal Vasc; 1995; 20(2):117-21. PubMed ID: 7650437
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Non-Newtonian blood flow in human right coronary arteries: steady state simulations.
    Johnston BM; Johnston PR; Corney S; Kilpatrick D
    J Biomech; 2004 May; 37(5):709-20. PubMed ID: 15047000
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spatial and phasic oscillation of non-Newtonian wall shear stress in human left coronary artery bifurcation: an insight to atherogenesis.
    Soulis JV; Giannoglou GD; Chatzizisis YS; Farmakis TM; Giannakoulas GA; Parcharidis GE; Louridas GE
    Coron Artery Dis; 2006 May; 17(4):351-8. PubMed ID: 16707958
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Different Blood Flow Models in Coronary Artery Diseases: Effects on hemodynamic parameters.
    Gaudio LT; Caruso MV; De Rosa S; Indolfi C; Fragomeni G
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3185-3188. PubMed ID: 30441071
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Investigation of blood flow rheology using second-grade viscoelastic model (Phan-Thien-Tanner) within carotid artery.
    Ramiar A; Larimi MM; Ranjbar AA
    Acta Bioeng Biomech; 2017; 19(3):27-41. PubMed ID: 29205216
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Two-layered model of Casson fluid flow through stenotic blood vessels: applications to the cardiovascular system.
    Srivastava VP; Saxena M
    J Biomech; 1994 Jul; 27(7):921-8. PubMed ID: 8063842
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Numerical study on the flow of a non-Newtonian fluid through an axisymmetric stenosis.
    Nakamura M; Sawada T
    J Biomech Eng; 1988 May; 110(2):137-43. PubMed ID: 3379935
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Influence of model boundary conditions on blood flow patterns in a patient specific stenotic right coronary artery.
    Liu B; Zheng J; Bach R; Tang D
    Biomed Eng Online; 2015; 14 Suppl 1(Suppl 1):S6. PubMed ID: 25602370
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The influence of the non-Newtonian properties of blood on blood-hammer through the posterior cerebral artery.
    Tazraei P; Riasi A; Takabi B
    Math Biosci; 2015 Jun; 264():119-27. PubMed ID: 25865933
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Blood flow through an axisymmetric stenosis.
    Pontrelli G
    Proc Inst Mech Eng H; 2001; 215(1):1-10. PubMed ID: 11323977
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Unsteady stenosis flow prediction: a comparative study of non-Newtonian models with operator splitting scheme.
    Siauw WL; Ng EY; Mazumdar J
    Med Eng Phys; 2000 May; 22(4):265-77. PubMed ID: 11018458
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.