These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 31741521)
21. Physicochemical Properties and Storage Stability of Microencapsulated DHA-Rich Oil with Different Wall Materials. Chen W; Wang H; Zhang K; Gao F; Chen S; Li D Appl Biochem Biotechnol; 2016 Aug; 179(7):1129-42. PubMed ID: 27003283 [TBL] [Abstract][Full Text] [Related]
22. Preparation of hydroxypropyl corn and amaranth starch hydrolyzate and its evaluation as wall material in microencapsulation. Kshirsagar AC; Singhal RS Food Chem; 2008 Jun; 108(3):958-64. PubMed ID: 26065758 [TBL] [Abstract][Full Text] [Related]
23. Properties of octenyl succinic anhydride (OSA) modified starches and their application in low fat mayonnaise. Bajaj R; Singh N; Kaur A Int J Biol Macromol; 2019 Jun; 131():147-157. PubMed ID: 30857961 [TBL] [Abstract][Full Text] [Related]
24. Preparation and characteristics of octenyl succinic anhydride-modified partial waxy rice starches and encapsulated paprika pigment powder. No J; Shin M Food Chem; 2019 Oct; 295():466-474. PubMed ID: 31174783 [TBL] [Abstract][Full Text] [Related]
25. Characterization of chitosan based polyelectrolyte films incorporated with OSA-modified gum arabic-stabilized cinnamon essential oil emulsions. Xu T; Gao C; Feng X; Wu D; Meng L; Cheng W; Zhang Y; Tang X Int J Biol Macromol; 2020 May; 150():362-370. PubMed ID: 32057867 [TBL] [Abstract][Full Text] [Related]
26. Flavor retention of peppermint (Mentha piperita L.) essential oil spray-dried in modified starches during encapsulation and storage. Baranauskiene R; Bylaite E; Zukauskaite J; Venskutonis RP J Agric Food Chem; 2007 Apr; 55(8):3027-36. PubMed ID: 17381102 [TBL] [Abstract][Full Text] [Related]
27. Influence of different combinations of wall materials on the microencapsulation of jussara pulp (Euterpe edulis) by spray drying. Santana AA; Cano-Higuita DM; de Oliveira RA; Telis VR Food Chem; 2016 Dec; 212():1-9. PubMed ID: 27374499 [TBL] [Abstract][Full Text] [Related]
28. Microencapsulation of grape polyphenols using maltodextrin and gum arabic as two alternative coating materials: Development and characterization. Tolun A; Altintas Z; Artik N J Biotechnol; 2016 Dec; 239():23-33. PubMed ID: 27720817 [TBL] [Abstract][Full Text] [Related]
29. Use of guar gum, gum arabic, pectin, beta-glucan and inulin for microencapsulation of anthocyanins from chokeberry. Pieczykolan E; Kurek MA Int J Biol Macromol; 2019 May; 129():665-671. PubMed ID: 30771400 [TBL] [Abstract][Full Text] [Related]
30. Matrix structure selection in the microparticles of essential oil oregano produced by spray dryer. da Costa JM; Borges SV; Hijo AA; Silva EK; Marques GR; Cirillo MÂ; de Azevedo VM J Microencapsul; 2013; 30(8):717-27. PubMed ID: 23534491 [TBL] [Abstract][Full Text] [Related]
31. Maltodextrin and Gum Arabic-Based Microencapsulation Methods for Anthocyanin Preservation in Juçara Palm (Euterpe edulis Martius) Fruit Pulp. Mazuco RA; Cardoso PMM; Bindaco ÉS; Scherer R; Castilho RO; Faraco AAG; Ruas FG; Oliveira JP; Guimarães MCC; de Andrade TU; Lenz D; Braga FC; Endringer DC Plant Foods Hum Nutr; 2018 Sep; 73(3):209-215. PubMed ID: 29956110 [TBL] [Abstract][Full Text] [Related]
32. Chemical composition, digestibility and emulsification properties of octenyl succinic esters of various starches. Simsek S; Ovando-Martinez M; Marefati A; Sjӧӧ M; Rayner M Food Res Int; 2015 Sep; 75():41-49. PubMed ID: 28454971 [TBL] [Abstract][Full Text] [Related]
33. Enhanced Microencapsulation of C-Phycocyanin from Pan-Utai W; Iamtham S Food Technol Biotechnol; 2020 Dec; 58(4):423-432. PubMed ID: 33505205 [TBL] [Abstract][Full Text] [Related]
34. Comparative Study on Microencapsulation of Lavender ( Pilicheva B; Uzunova Y; Katsarov P Molecules; 2021 Dec; 26(24):. PubMed ID: 34946549 [TBL] [Abstract][Full Text] [Related]
35. Freeze-dried human milk microcapsules using gum arabic and maltodextrin: An approach to improving solubility. Alves ES; Ferreira CSR; Souza PR; Bruni ARS; Castro MC; Saqueti BHF; Santos OO; Madrona GS; Visentainer JV Int J Biol Macromol; 2023 May; 238():124100. PubMed ID: 36958443 [TBL] [Abstract][Full Text] [Related]
36. Microencapsulation of sea buckthorn ( Xu S; Tang Z; Liu H; Wang M; Sun J; Song Z; Cui C; Sun C; Liu S; Wang Z; Yu J Food Sci Nutr; 2020 Nov; 8(11):5785-5797. PubMed ID: 33282231 [TBL] [Abstract][Full Text] [Related]
37. Optimisation of the microencapsulation of lavender oil by spray drying. Burhan AM; Abdel-Hamid SM; Soliman ME; Sammour OA J Microencapsul; 2019 May; 36(3):250-266. PubMed ID: 31099280 [No Abstract] [Full Text] [Related]
38. Formulation and characterization of O/W emulsions stabilized using octenyl succinic anhydride modified kudzu starch. Zhao Y; Khalid N; Shu G; Neves MA; Kobayashi I; Nakajima M Carbohydr Polym; 2017 Nov; 176():91-98. PubMed ID: 28927631 [TBL] [Abstract][Full Text] [Related]
39. Microencapsulation of lutein by spray-drying: Characterization and stability analyses to promote its use as a functional ingredient. Álvarez-Henao MV; Saavedra N; Medina S; Jiménez Cartagena C; Alzate LM; Londoño-Londoño J Food Chem; 2018 Aug; 256():181-187. PubMed ID: 29606436 [TBL] [Abstract][Full Text] [Related]
40. Microencapsulation of bioactive compound extracts using maltodextrin and gum arabic by spray and freeze-drying techniques. Laureanti EJG; Paiva TS; de Matos Jorge LM; Jorge RMM Int J Biol Macromol; 2023 Dec; 253(Pt 4):126969. PubMed ID: 37730006 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]