BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 31741698)

  • 1. Influence of AFM Tip Temperature on THF Hydrate Stability: Theoretical Model and Numerical Simulation.
    Peng L; Ning F; Li W; Sun J; Cao P; Liu Z; Xie J
    Scanning; 2019; 2019():1694169. PubMed ID: 31741698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat capacity of tetrahydrofuran clathrate hydrate and of its components, and the clathrate formation from supercooled melt.
    Tombari E; Presto S; Salvetti G; Johari GP
    J Chem Phys; 2006 Apr; 124(15):154507. PubMed ID: 16674242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micro-Tomographic Investigation of Ice and Clathrate Formation and Decomposition under Thermodynamic Monitoring.
    Arzbacher S; Petrasch J; Ostermann A; Loerting T
    Materials (Basel); 2016 Aug; 9(8):. PubMed ID: 28773789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth mode transition of tetrahydrofuran clathrate hydrates in the guest/host concentration boundary layer.
    Sabase Y; Nagashima K
    J Phys Chem B; 2009 Nov; 113(46):15304-11. PubMed ID: 19856936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale thermal AFM of polymers: transient heat flow effects.
    Duvigneau J; Schönherr H; Vancso GJ
    ACS Nano; 2010 Nov; 4(11):6932-40. PubMed ID: 20979371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of low field NMR T2 measurements to clathrate hydrates.
    Gao S; Chapman WG; House W
    J Magn Reson; 2009 Apr; 197(2):208-12. PubMed ID: 19201233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature dependence of particle-particle adherence forces in ice and clathrate hydrates.
    Yang SO; Kleehammer DM; Huo Z; Sloan ED; Miller KT
    J Colloid Interface Sci; 2004 Sep; 277(2):335-41. PubMed ID: 15341844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of Sodium Dodecyl Sulfate on Tetrahydrofuran-Assisted Methane Hydrate Formation.
    Siangsai A; Inkong K; Kulprathipanja S; Kitiyanan B; Rangsunvigit P
    J Oleo Sci; 2018 Jun; 67(6):707-717. PubMed ID: 29760334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nano/Microscale Thermal Field Distribution: Conducting Thermal Decomposition of Pyrolytic-Type Polymer by Heated AFM Probes.
    Li B; Geng Y; Yan Y
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32156045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amorphous-like thermal conductivity and high mechanical stability of cyclopentane clathrate hydrate.
    Andersson O; Saiduzzaman M; Brant Carvalho PHB; Häussermann U
    Phys Chem Chem Phys; 2024 Jun; 26(22):16017-16025. PubMed ID: 38775259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interfacial mechanical properties of tetrahydrofuran hydrate-solid surfaces: Implications for hydrate management.
    Lin Y; Li T; Liu S; Shi Q; Xu K; Zhang Z; Wu J
    J Colloid Interface Sci; 2023 Jan; 629(Pt B):326-335. PubMed ID: 36162390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of tip shape on nanomechanical properties measurements using AFM.
    Nguyen QD; Chung KH
    Ultramicroscopy; 2019 Jul; 202():1-9. PubMed ID: 30927610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the Thermodynamic Stability of Clathrate Hydrates VI: Complete Phase Diagram.
    Tanaka H; Yagasaki T; Matsumoto M
    J Phys Chem B; 2018 Jan; 122(1):297-308. PubMed ID: 29212321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen in porous tetrahydrofuran clathrate hydrate.
    Mulder FM; Wagemaker M; van Eijck L; Kearley GJ
    Chemphyschem; 2008 Jun; 9(9):1331-7. PubMed ID: 18481338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of the univariant two-phase coexistence line of the tetrahydrofuran hydrate from computer simulation.
    Algaba J; Romero-Guzmán C; Torrejón MJ; Blas FJ
    J Chem Phys; 2024 Apr; 160(16):. PubMed ID: 38666574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular insights into the heterogeneous crystal growth of tetrahydrofuran hydrate: Kinetic and interfacial properties.
    Ebrahimian F; Peyvandi K; Varaminian F
    J Mol Graph Model; 2022 Sep; 115():108205. PubMed ID: 35550971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the critical nucleus size in tetrahydrofuran clathrate hydrate formation using surface-anchored nanoparticles.
    Xue H; Li L; Wang Y; Lu Y; Cui K; He Z; Bai G; Liu J; Zhou X; Wang J
    Nat Commun; 2024 Jan; 15(1):157. PubMed ID: 38167854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfacial Effects during Phase Change in Multiple Levitated Tetrahydrofuran Hydrate Droplets.
    McElligott A; Guerra A; Denoncourt A; Rey AD; Servio P
    Langmuir; 2023 Jan; 39(4):1573-1584. PubMed ID: 36662650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the effect of moderate concentration SDS on CO
    Cai X; Worley J; Phan A; Salvalaglio M; Koh C; Striolo A
    J Colloid Interface Sci; 2024 Mar; 658():1-11. PubMed ID: 38091793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling the manipulation of C60 on the Si001 surface performed with NC-AFM.
    Martsinovich N; Kantorovich L
    Nanotechnology; 2009 Apr; 20(13):135706. PubMed ID: 19420515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.