BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 31742477)

  • 1. Carb-Loading: Freeze-Induced Activation of the Glucose-Responsive ChREBP Transcriptional Network in Wood Frogs.
    Al-Attar R; Wu CW; Biggar KK; Storey KB
    Physiol Biochem Zool; 2020; 93(1):49-61. PubMed ID: 31742477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MondoA:MLX complex regulates glucose-dependent gene expression and links to circadian rhythm in liver and brain of the freeze-tolerant wood frog, Rana sylvatica.
    Singh G; Storey KB
    Mol Cell Biochem; 2020 Oct; 473(1-2):203-216. PubMed ID: 32638259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue-specific response of carbohydrate-responsive element binding protein (ChREBP) to mammalian hibernation in 13-lined ground squirrels.
    Logan SM; Storey KB
    Cryobiology; 2016 Oct; 73(2):103-11. PubMed ID: 27614289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Freeze-responsive regulation of MEF2 proteins and downstream gene networks in muscles of the wood frog, Rana sylvatica.
    Aguilar OA; Hadj-Moussa H; Storey KB
    J Therm Biol; 2017 Jul; 67():1-8. PubMed ID: 28558931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental stress responsive expression of the gene li16 in Rana sylvatica, the freeze tolerant wood frog.
    Sullivan KJ; Storey KB
    Cryobiology; 2012 Jun; 64(3):192-200. PubMed ID: 22301420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Up-regulation of acidic ribosomal phosphoprotein P0 in response to freezing or anoxia in the freeze tolerant wood frog, Rana sylvatica.
    Wu S; Storey KB
    Cryobiology; 2005 Feb; 50(1):71-82. PubMed ID: 15710371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Freezing stress adaptations: Critical elements to activate Nrf2 related antioxidant defense in liver and skeletal muscle of the freeze tolerant wood frogs.
    Zhang J; Gupta A; Storey KB
    Comp Biochem Physiol B Biochem Mol Biol; 2021; 254():110573. PubMed ID: 33548505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flightless I homolog negatively regulates ChREBP activity in cancer cells.
    Wu L; Chen H; Zhu Y; Meng J; Li Y; Li M; Yang D; Zhang P; Feng M; Tong X
    Int J Biochem Cell Biol; 2013 Nov; 45(11):2688-97. PubMed ID: 24055811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of SMAD transcription factors during freezing in the freeze tolerant wood frog, Rana sylvatica.
    Aguilar OA; Hadj-Moussa H; Storey KB
    Comp Biochem Physiol B Biochem Mol Biol; 2016 Nov; 201():64-71. PubMed ID: 27424790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and characterization of a novel freezing inducible gene, li16, in the wood frog Rana sylvatica.
    McNally JD; Wu SB; Sturgeon CM; Storey KB
    FASEB J; 2002 Jun; 16(8):902-4. PubMed ID: 12039874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategies for exploration of freeze responsive gene expression: advances in vertebrate freeze tolerance.
    Storey KB
    Cryobiology; 2004 Apr; 48(2):134-45. PubMed ID: 15094090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cold acclimation-induced up-regulation of the ribosomal protein L7 gene in the freeze tolerant wood frog, Rana sylvatica.
    Wu S; De Croos JN; Storey KB
    Gene; 2008 Nov; 424(1-2):48-55. PubMed ID: 18706984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of gamma-glutamyltranspeptidase in the liver of the frog: 3. Response to freezing and thawing in the freeze-tolerant wood frog Rana sylvatica.
    Hemmings SJ; Storey KB
    Cell Biochem Funct; 1996 Jun; 14(2):139-48. PubMed ID: 8640954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycogen synthase kinase-3: cryoprotection and glycogen metabolism in the freeze-tolerant wood frog.
    Dieni CA; Bouffard MC; Storey KB
    J Exp Biol; 2012 Feb; 215(Pt 3):543-51. PubMed ID: 22246263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MicroRNA regulation in heart and skeletal muscle over the freeze-thaw cycle in the freeze tolerant wood frog.
    Bansal S; Luu BE; Storey KB
    J Comp Physiol B; 2016 Feb; 186(2):229-41. PubMed ID: 26660652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose concentration regulates freeze tolerance in the wood frog Rana sylvatica.
    Costanzo JP; Lee RE; Lortz PH
    J Exp Biol; 1993 Aug; 181():245-55. PubMed ID: 8409827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cryoprotectant Production in Freeze-Tolerant Wood Frogs Is Augmented by Multiple Freeze-Thaw Cycles.
    Larson DJ; Barnes BM
    Physiol Biochem Zool; 2016; 89(4):340-6. PubMed ID: 27327184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphoglycerate kinase 1 expression responds to freezing, anoxia, and dehydration stresses in the freeze tolerant wood frog, Rana sylvatica.
    Wu S; Storey JM; Storey KB
    J Exp Zool A Ecol Genet Physiol; 2009 Jan; 311(1):57-67. PubMed ID: 18785212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification of carbamoyl phosphate synthetase 1 (CPS1) from wood frog (Rana sylvatica) liver and its regulation in response to ice-nucleation and subsequent whole-body freezing.
    Green SR; Storey KB
    Mol Cell Biochem; 2019 May; 455(1-2):29-39. PubMed ID: 30421312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Passive regeneration of glutathione: glutathione reductase regulation in the freeze-tolerant North American wood frog,
    Dawson NJ; Storey KB
    J Exp Biol; 2017 Sep; 220(Pt 17):3162-3171. PubMed ID: 28659307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.