BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 31742599)

  • 21. Hyperspectral imaging combined with machine learning as a tool to obtain high-throughput plant salt-stress phenotyping.
    Feng X; Zhan Y; Wang Q; Yang X; Yu C; Wang H; Tang Z; Jiang D; Peng C; He Y
    Plant J; 2020 Mar; 101(6):1448-1461. PubMed ID: 31680357
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A genetic network of flowering-time genes in wheat leaves, in which an APETALA1/FRUITFULL-like gene, VRN1, is upstream of FLOWERING LOCUS T.
    Shimada S; Ogawa T; Kitagawa S; Suzuki T; Ikari C; Shitsukawa N; Abe T; Kawahigashi H; Kikuchi R; Handa H; Murai K
    Plant J; 2009 May; 58(4):668-81. PubMed ID: 19175767
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetic basis of the very short life cycle of 'Apogee' wheat.
    Li G; Boontung R; Powers C; Belamkar V; Huang T; Miao F; Baenziger PS; Yan L
    BMC Genomics; 2017 Oct; 18(1):838. PubMed ID: 29089022
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome-wide association studies of seven agronomic traits under two sowing conditions in bread wheat.
    Jamil M; Ali A; Gul A; Ghafoor A; Napar AA; Ibrahim AMH; Naveed NH; Yasin NA; Mujeeb-Kazi A
    BMC Plant Biol; 2019 Apr; 19(1):149. PubMed ID: 31003597
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New Deep Learning Genomic-Based Prediction Model for Multiple Traits with Binary, Ordinal, and Continuous Phenotypes.
    Montesinos-López OA; Martín-Vallejo J; Crossa J; Gianola D; Hernández-Suárez CM; Montesinos-López A; Juliana P; Singh R
    G3 (Bethesda); 2019 May; 9(5):1545-1556. PubMed ID: 30858235
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wheat genomic study for genetic improvement of traits in China.
    Xiao J; Liu B; Yao Y; Guo Z; Jia H; Kong L; Zhang A; Ma W; Ni Z; Xu S; Lu F; Jiao Y; Yang W; Lin X; Sun S; Lu Z; Gao L; Zhao G; Cao S; Chen Q; Zhang K; Wang M; Wang M; Hu Z; Guo W; Li G; Ma X; Li J; Han F; Fu X; Ma Z; Wang D; Zhang X; Ling HQ; Xia G; Tong Y; Liu Z; He Z; Jia J; Chong K
    Sci China Life Sci; 2022 Sep; 65(9):1718-1775. PubMed ID: 36018491
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Applying association mapping and genomic selection to the dissection of key traits in elite European wheat.
    Bentley AR; Scutari M; Gosman N; Faure S; Bedford F; Howell P; Cockram J; Rose GA; Barber T; Irigoyen J; Horsnell R; Pumfrey C; Winnie E; Schacht J; Beauchêne K; Praud S; Greenland A; Balding D; Mackay IJ
    Theor Appl Genet; 2014 Dec; 127(12):2619-33. PubMed ID: 25273129
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The value of early-stage phenotyping for wheat breeding in the age of genomic selection.
    Borrenpohl D; Huang M; Olson E; Sneller C
    Theor Appl Genet; 2020 Aug; 133(8):2499-2520. PubMed ID: 32488300
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Leaf Count Aided Novel Framework for Rice (
    Vishal MK; Saluja R; Aggrawal D; Banerjee B; Raju D; Kumar S; Chinnusamy V; Sahoo RN; Adinarayana J
    Plants (Basel); 2022 Oct; 11(19):. PubMed ID: 36235529
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wheat Spike Blast Image Classification Using Deep Convolutional Neural Networks.
    Fernández-Campos M; Huang YT; Jahanshahi MR; Wang T; Jin J; Telenko DEP; Góngora-Canul C; Cruz CD
    Front Plant Sci; 2021; 12():673505. PubMed ID: 34220894
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DeepFlower: a deep learning-based approach to characterize flowering patterns of cotton plants in the field.
    Jiang Y; Li C; Xu R; Sun S; Robertson JS; Paterson AH
    Plant Methods; 2020 Dec; 16(1):156. PubMed ID: 33372635
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mutant alleles of Photoperiod-1 in wheat (Triticum aestivum L.) that confer a late flowering phenotype in long days.
    Shaw LM; Turner AS; Herry L; Griffiths S; Laurie DA
    PLoS One; 2013; 8(11):e79459. PubMed ID: 24244507
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional mapping of N deficiency-induced response in wheat yield-component traits by implementing high-throughput phenotyping.
    Jiang L; Sun L; Ye M; Wang J; Wang Y; Bogard M; Lacaze X; Fournier A; Beauchêne K; Gouache D; Wu R
    Plant J; 2019 Mar; 97(6):1105-1119. PubMed ID: 30536457
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Panicle Ratio Network: streamlining rice panicle measurement by deep learning with ultra-high-definition aerial images in the field.
    Guo Z; Yang C; Yang W; Chen G; Jiang Z; Wang B; Zhang J
    J Exp Bot; 2022 Nov; 73(19):6575-6588. PubMed ID: 35776094
    [TBL] [Abstract][Full Text] [Related]  

  • 35. TaeC: A manually annotated text dataset for trait and phenotype extraction and entity linking in wheat breeding literature.
    Nédellec C; Sauvion C; Bossy R; Borovikova M; Deléger L
    PLoS One; 2024; 19(6):e0305475. PubMed ID: 38870159
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DeepCob: precise and high-throughput analysis of maize cob geometry using deep learning with an application in genebank phenomics.
    Kienbaum L; Correa Abondano M; Blas R; Schmid K
    Plant Methods; 2021 Aug; 17(1):91. PubMed ID: 34419093
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hyperspectral Technique Combined With Deep Learning Algorithm for Prediction of Phenotyping Traits in Lettuce.
    Yu S; Fan J; Lu X; Wen W; Shao S; Guo X; Zhao C
    Front Plant Sci; 2022; 13():927832. PubMed ID: 35845657
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Image-based phenomic prediction can provide valuable decision support in wheat breeding.
    Roth L; Fossati D; Krähenbühl P; Walter A; Hund A
    Theor Appl Genet; 2023 Jun; 136(7):162. PubMed ID: 37368140
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype-phenotype relationships and its relevance to crop improvement.
    Cobb JN; Declerck G; Greenberg A; Clark R; McCouch S
    Theor Appl Genet; 2013 Apr; 126(4):867-87. PubMed ID: 23471459
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integration of high-throughput phenotyping, GWAS, and predictive models reveals the genetic architecture of plant height in maize.
    Wang W; Guo W; Le L; Yu J; Wu Y; Li D; Wang Y; Wang H; Lu X; Qiao H; Gu X; Tian J; Zhang C; Pu L
    Mol Plant; 2023 Feb; 16(2):354-373. PubMed ID: 36447436
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.