BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 31742599)

  • 41. Image-based phenomic prediction can provide valuable decision support in wheat breeding.
    Roth L; Fossati D; Krähenbühl P; Walter A; Hund A
    Theor Appl Genet; 2023 Jun; 136(7):162. PubMed ID: 37368140
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype-phenotype relationships and its relevance to crop improvement.
    Cobb JN; Declerck G; Greenberg A; Clark R; McCouch S
    Theor Appl Genet; 2013 Apr; 126(4):867-87. PubMed ID: 23471459
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Integration of high-throughput phenotyping, GWAS, and predictive models reveals the genetic architecture of plant height in maize.
    Wang W; Guo W; Le L; Yu J; Wu Y; Li D; Wang Y; Wang H; Lu X; Qiao H; Gu X; Tian J; Zhang C; Pu L
    Mol Plant; 2023 Feb; 16(2):354-373. PubMed ID: 36447436
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Genetic architecture of male floral traits required for hybrid wheat breeding.
    Boeven PH; Longin CF; Leiser WL; Kollers S; Ebmeyer E; Würschum T
    Theor Appl Genet; 2016 Dec; 129(12):2343-2357. PubMed ID: 27553082
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High-throughput soybean seeds phenotyping with convolutional neural networks and transfer learning.
    Yang S; Zheng L; He P; Wu T; Sun S; Wang M
    Plant Methods; 2021 May; 17(1):50. PubMed ID: 33952294
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Computer vision-based phenotyping for improvement of plant productivity: a machine learning perspective.
    Mochida K; Koda S; Inoue K; Hirayama T; Tanaka S; Nishii R; Melgani F
    Gigascience; 2019 Jan; 8(1):. PubMed ID: 30520975
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Application of image-based phenotyping tools to identify QTL for in-field winter survival of winter wheat (Triticum aestivum L.).
    Chen Y; Sidhu HS; Kaviani M; McElroy MS; Pozniak CJ; Navabi A
    Theor Appl Genet; 2019 Sep; 132(9):2591-2604. PubMed ID: 31177292
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genetic control of some plant growth characteristics of bread wheat (Triticum aestivum L.) under aluminum stress.
    Farokhzadeh S; Fakheri BA; Nezhad NM; Tahmasebi S; Mirsoleimani A; Lynne McIntyre C
    Genes Genomics; 2020 Mar; 42(3):245-261. PubMed ID: 31833049
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rapid Phenotyping Adult Plant Resistance to Stem Rust in Wheat Grown under Controlled Conditions.
    Riaz A; T Hickey L
    Methods Mol Biol; 2017; 1659():183-196. PubMed ID: 28856651
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Elucidation of the genetic basis of variation for stem strength characteristics in bread wheat by Associative Transcriptomics.
    Miller CN; Harper AL; Trick M; Werner P; Waldron K; Bancroft I
    BMC Genomics; 2016 Jul; 17():500. PubMed ID: 27423334
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pheno-Deep Counter: a unified and versatile deep learning architecture for leaf counting.
    Giuffrida MV; Doerner P; Tsaftaris SA
    Plant J; 2018 Nov; 96(4):880-890. PubMed ID: 30101442
    [TBL] [Abstract][Full Text] [Related]  

  • 52. ChronoRoot: High-throughput phenotyping by deep segmentation networks reveals novel temporal parameters of plant root system architecture.
    Gaggion N; Ariel F; Daric V; Lambert É; Legendre S; Roulé T; Camoirano A; Milone DH; Crespi M; Blein T; Ferrante E
    Gigascience; 2021 Jul; 10(7):. PubMed ID: 34282452
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Leveraging Image Analysis for High-Throughput Plant Phenotyping.
    Das Choudhury S; Samal A; Awada T
    Front Plant Sci; 2019; 10():508. PubMed ID: 31068958
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Classical phenotyping and deep learning concur on genetic control of stomatal density and area in sorghum.
    Bheemanahalli R; Wang C; Bashir E; Chiluwal A; Pokharel M; Perumal R; Moghimi N; Ostmeyer T; Caragea D; Jagadish SVK
    Plant Physiol; 2021 Jul; 186(3):1562-1579. PubMed ID: 33856488
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Towards Automated Analysis of Grain Spikes in Greenhouse Images Using Neural Network Approaches: A Comparative Investigation of Six Methods.
    Ullah S; Henke M; Narisetti N; Panzarová K; Trtílek M; Hejatko J; Gladilin E
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833515
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Genome-Wide Association Mapping of Anther Extrusion in Hexaploid Spring Wheat.
    Muqaddasi QH; Lohwasser U; Nagel M; Börner A; Pillen K; Röder MS
    PLoS One; 2016; 11(5):e0155494. PubMed ID: 27191600
    [TBL] [Abstract][Full Text] [Related]  

  • 57.
    Dixon LE; Greenwood JR; Bencivenga S; Zhang P; Cockram J; Mellers G; Ramm K; Cavanagh C; Swain SM; Boden SA
    Plant Cell; 2018 Mar; 30(3):563-581. PubMed ID: 29444813
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Deciphering the Genetics of Major End-Use Quality Traits in Wheat.
    Naraghi SM; Simsek S; Kumar A; Al Rabbi SMH; Alamri MS; Elias EM; Mergoum M
    G3 (Bethesda); 2019 May; 9(5):1405-1427. PubMed ID: 30804024
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Image-Based Phenotyping of Flowering Intensity in Cool-Season Crops.
    Zhang C; Craine WA; McGee RJ; Vandemark GJ; Davis JB; Brown J; Hulbert SH; Sankaran S
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32155830
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multi-modal deep learning improves grain yield prediction in wheat breeding by fusing genomics and phenomics.
    Togninalli M; Wang X; Kucera T; Shrestha S; Juliana P; Mondal S; Pinto F; Govindan V; Crespo-Herrera L; Huerta-Espino J; Singh RP; Borgwardt K; Poland J
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37220903
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.