These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 31742599)

  • 61. Leveraging Image Analysis for High-Throughput Plant Phenotyping.
    Das Choudhury S; Samal A; Awada T
    Front Plant Sci; 2019; 10():508. PubMed ID: 31068958
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Classical phenotyping and deep learning concur on genetic control of stomatal density and area in sorghum.
    Bheemanahalli R; Wang C; Bashir E; Chiluwal A; Pokharel M; Perumal R; Moghimi N; Ostmeyer T; Caragea D; Jagadish SVK
    Plant Physiol; 2021 Jul; 186(3):1562-1579. PubMed ID: 33856488
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Deciphering the Genetics of Major End-Use Quality Traits in Wheat.
    Naraghi SM; Simsek S; Kumar A; Al Rabbi SMH; Alamri MS; Elias EM; Mergoum M
    G3 (Bethesda); 2019 May; 9(5):1405-1427. PubMed ID: 30804024
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Towards Automated Analysis of Grain Spikes in Greenhouse Images Using Neural Network Approaches: A Comparative Investigation of Six Methods.
    Ullah S; Henke M; Narisetti N; Panzarová K; Trtílek M; Hejatko J; Gladilin E
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833515
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Image-Based Phenotyping of Flowering Intensity in Cool-Season Crops.
    Zhang C; Craine WA; McGee RJ; Vandemark GJ; Davis JB; Brown J; Hulbert SH; Sankaran S
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32155830
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Genetics of flowering time in bread wheat Triticum aestivum: complementary interaction between vernalization-insensitive and photoperiod-insensitive mutations imparts very early flowering habit to spring wheat.
    Kumar S; Sharma V; Chaudhary S; Tyagi A; Mishra P; Priyadarshini A; Singh A
    J Genet; 2012; 91(1):33-47. PubMed ID: 22546824
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Multi-modal deep learning improves grain yield prediction in wheat breeding by fusing genomics and phenomics.
    Togninalli M; Wang X; Kucera T; Shrestha S; Juliana P; Mondal S; Pinto F; Govindan V; Crespo-Herrera L; Huerta-Espino J; Singh RP; Borgwardt K; Poland J
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37220903
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Functional phenomics and genetics of the root economics space in winter wheat using high-throughput phenotyping of respiration and architecture.
    Guo H; Ayalew H; Seethepalli A; Dhakal K; Griffiths M; Ma XF; York LM
    New Phytol; 2021 Oct; 232(1):98-112. PubMed ID: 33683730
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Quantitative trait locus analysis for flowering-related traits using two F2 populations derived from crosses between Japanese common wheat cultivars and synthetic hexaploids.
    Nguyen AT; Nishijima R; Kajimura T; Murai K; Takumi S
    Genes Genet Syst; 2015; 90(2):89-98. PubMed ID: 26399768
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Semifield root phenotyping: Root traits for deep nitrate uptake.
    Wacker TS; Popovic O; Olsen NAF; Markussen B; Smith AG; Svane SF; Thorup-Kristensen K
    Plant Cell Environ; 2022 Mar; 45(3):823-836. PubMed ID: 34806183
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Bread Wheat (Triticum aestivum L.) Grain Protein Concentration Is Related to Early Post-Flowering Nitrate Uptake under Putative Control of Plant Satiety Level.
    Taulemesse F; Le Gouis J; Gouache D; Gibon Y; Allard V
    PLoS One; 2016; 11(2):e0149668. PubMed ID: 26886933
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Outdoor Plant Segmentation With Deep Learning for High-Throughput Field Phenotyping on a Diverse Wheat Dataset.
    Zenkl R; Timofte R; Kirchgessner N; Roth L; Hund A; Van Gool L; Walter A; Aasen H
    Front Plant Sci; 2021; 12():774068. PubMed ID: 35058948
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Deep learning-based high-throughput phenotyping can drive future discoveries in plant reproductive biology.
    Warman C; Fowler JE
    Plant Reprod; 2021 Jun; 34(2):81-89. PubMed ID: 33725183
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A large-scale pedigree resource of wheat reveals evidence for adaptation and selection by breeders.
    Fradgley N; Gardner KA; Cockram J; Elderfield J; Hickey JM; Howell P; Jackson R; Mackay IJ
    PLoS Biol; 2019 Feb; 17(2):e3000071. PubMed ID: 30818353
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Genome-wide association study of heading and flowering dates and construction of its prediction equation in Chinese common wheat.
    Zhang X; Chen J; Yan Y; Yan X; Shi C; Zhao L; Chen F
    Theor Appl Genet; 2018 Nov; 131(11):2271-2285. PubMed ID: 30218294
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Genomic Prediction and Indirect Selection for Grain Yield in US Pacific Northwest Winter Wheat Using Spectral Reflectance Indices from High-Throughput Phenotyping.
    Lozada DN; Godoy JV; Ward BP; Carter AH
    Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31881728
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Integrating high-throughput phenotyping and genome-wide association studies for enhanced drought resistance and yield prediction in wheat.
    Zhang Z; Qu Y; Ma F; Lv Q; Zhu X; Guo G; Li M; Yang W; Que B; Zhang Y; He T; Qiu X; Deng H; Song J; Liu Q; Wang B; Ke Y; Bai S; Li J; Lv L; Li R; Wang K; Li H; Feng H; Huang J; Yang W; Zhou Y; Song CP
    New Phytol; 2024 Jul; ():. PubMed ID: 38992951
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Using high-throughput multiple optical phenotyping to decipher the genetic architecture of maize drought tolerance.
    Wu X; Feng H; Wu D; Yan S; Zhang P; Wang W; Zhang J; Ye J; Dai G; Fan Y; Li W; Song B; Geng Z; Yang W; Chen G; Qin F; Terzaghi W; Stitzer M; Li L; Xiong L; Yan J; Buckler E; Yang W; Dai M
    Genome Biol; 2021 Jun; 22(1):185. PubMed ID: 34162419
    [TBL] [Abstract][Full Text] [Related]  

  • 79. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.
    Mutasa S; Chang PD; Ruzal-Shapiro C; Ayyala R
    J Digit Imaging; 2018 Aug; 31(4):513-519. PubMed ID: 29404850
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Computer vision and machine learning enabled soybean root phenotyping pipeline.
    Falk KG; Jubery TZ; Mirnezami SV; Parmley KA; Sarkar S; Singh A; Ganapathysubramanian B; Singh AK
    Plant Methods; 2020; 16():5. PubMed ID: 31993072
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.