BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 31742850)

  • 1. CmVVD is involved in fruiting body development and carotenoid production and the transcriptional linkage among three blue-light receptors in edible fungus Cordyceps militaris.
    Zhang J; Wang F; Yang Y; Wang Y; Dong C
    Environ Microbiol; 2020 Jan; 22(1):466-482. PubMed ID: 31742850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DASH-type cryptochromes regulate fruiting body development and secondary metabolism differently than CmWC-1 in the fungus Cordyceps militaris.
    Wang F; Song X; Dong X; Zhang J; Dong C
    Appl Microbiol Biotechnol; 2017 Jun; 101(11):4645-4657. PubMed ID: 28409381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The blue-light receptor CmWC-1 mediates fruit body development and secondary metabolism in Cordyceps militaris.
    Yang T; Guo M; Yang H; Guo S; Dong C
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):743-55. PubMed ID: 26476643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoperiodic Responses and Characterization of the Cmvvd Gene Encoding a Blue Light Photoreceptor from the Medicinal Caterpillar Fungus Cordyceps militaris (Ascomycetes).
    Zhang X; Dong X; Song X; Wang F; Dong C
    Int J Med Mushrooms; 2017; 19(2):163-172. PubMed ID: 28436325
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Lou HW; Zhao Y; Chen BX; Yu YH; Tang HB; Ye ZW; Lin JF; Guo LQ
    Biomolecules; 2020 Mar; 10(3):. PubMed ID: 32155914
    [No Abstract]   [Full Text] [Related]  

  • 6. Photo morphogenesis and photo response of the blue-light receptor gene Cmwc-1 in different strains of Cordyceps militaris.
    Yang T; Dong C
    FEMS Microbiol Lett; 2014 Mar; 352(2):190-7. PubMed ID: 24484244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome resequencing and transcriptome analysis reveal the molecular mechanism of albinism in
    Zhao Y; Liu Y; Chen X; Xiao J
    Front Microbiol; 2023; 14():1153153. PubMed ID: 37113230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carotenoid Production by Caterpillar Medicinal Mushrooms, Cordyceps militaris (Ascomycetes), under Different Culture Conditions.
    Yang Y; Bu N; Wang S; Zhang J; Wang Y; Dong C
    Int J Med Mushrooms; 2020; 22(12):1191-1201. PubMed ID: 33463936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preservation affects the vegetative growth and fruiting body production of Cordyceps militaris.
    Sun H; Hu T; Guo Y; Liang Y
    World J Microbiol Biotechnol; 2018 Oct; 34(11):166. PubMed ID: 30377835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Omics data reveal the unusual asexual-fruiting nature and secondary metabolic potentials of the medicinal fungus Cordyceps cicadae.
    Lu Y; Luo F; Cen K; Xiao G; Yin Y; Li C; Li Z; Zhan S; Zhang H; Wang C
    BMC Genomics; 2017 Aug; 18(1):668. PubMed ID: 28854898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhf1 gene is involved in the fruiting body production of Cordyceps militaris fungus.
    Jiang K; Han R
    J Ind Microbiol Biotechnol; 2015 Aug; 42(8):1183-96. PubMed ID: 26047996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Strain Preservation Methods on Fruiting Body Growth and Metabolite Production by the Medicinal Mushroom Cordyceps militaris (Ascomycetes).
    Liu Q; Wang F; Liu K; Dong C
    Int J Med Mushrooms; 2018; 20(10):1003-1011. PubMed ID: 30806271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine.
    Zheng P; Xia Y; Xiao G; Xiong C; Hu X; Zhang S; Zheng H; Huang Y; Zhou Y; Wang S; Zhao GP; Liu X; St Leger RJ; Wang C
    Genome Biol; 2011 Nov; 12(11):R116. PubMed ID: 22112802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic Genome-Wide Transcription Profiling and Direct Target Genes of CmWC-1 Reveal Hierarchical Light Signal Transduction in
    Zhang J; Wang F; Liu M; Fu M; Dong C
    J Fungi (Basel); 2022 Jun; 8(6):. PubMed ID: 35736107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of fruiting body production in Cordyceps militaris by molecular assessment.
    Zhang G; Liang Y
    Arch Microbiol; 2013 Aug; 195(8):579-85. PubMed ID: 23756567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptomic analysis of the orchestrated molecular mechanisms underlying fruiting body initiation in Chinese cordyceps.
    Zhao Y; Zhang J; Meng Q; Zhang H; Zhou G; Li M; Wu P; Shu R; Gao X; Guo L; Tong Y; Cheng L; Guo L; Chen C; Qin Q
    Gene; 2020 Dec; 763():145061. PubMed ID: 32818595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrophobin Gene
    Li X; Liu M; Dong C
    Int J Mol Sci; 2023 Feb; 24(5):. PubMed ID: 36902017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental transcriptomics of Chinese cordyceps reveals gene regulatory network and expression profiles of sexual development-related genes.
    Li X; Wang F; Liu Q; Li Q; Qian Z; Zhang X; Li K; Li W; Dong C
    BMC Genomics; 2019 May; 20(1):337. PubMed ID: 31054562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cysteine-Rich Hydrophobin Gene Family: Genome Wide Analysis, Phylogeny and Transcript Profiling in
    Li X; Wang F; Xu Y; Liu G; Dong C
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33440688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional convergence and divergence of mating-type genes fulfilling in Cordyceps militaris.
    Lu Y; Xia Y; Luo F; Dong C; Wang C
    Fungal Genet Biol; 2016 Mar; 88():35-43. PubMed ID: 26812121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.