These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 31742859)
21. The impact of temperature change on the activity and community composition of sulfate-reducing bacteria in arctic versus temperate marine sediments. Robador A; Brüchert V; Jørgensen BB Environ Microbiol; 2009 Jul; 11(7):1692-703. PubMed ID: 19292778 [TBL] [Abstract][Full Text] [Related]
22. Activity and community structures of sulfate-reducing microorganisms in polar, temperate and tropical marine sediments. Robador A; Müller AL; Sawicka JE; Berry D; Hubert CR; Loy A; Jørgensen BB; Brüchert V ISME J; 2016 Apr; 10(4):796-809. PubMed ID: 26359912 [TBL] [Abstract][Full Text] [Related]
23. Isolation of sulfate-reducing bacteria from the terrestrial deep subsurface and description of Desulfovibrio cavernae sp. nov. Sass H; Cypionka H Syst Appl Microbiol; 2004 Sep; 27(5):541-8. PubMed ID: 15490555 [TBL] [Abstract][Full Text] [Related]
24. Contrasting community composition of endospores and vegetative Firmicutes in a marine sediment suggests both endogenous and exogenous sources of endospore accumulation. Cupit C; Lomstein BA; Kjeldsen KU Environ Microbiol Rep; 2019 Jun; 11(3):352-360. PubMed ID: 30043505 [TBL] [Abstract][Full Text] [Related]
25. Effect of temperature on sulphate reduction, growth rate and growth yield in five psychrophilic sulphate-reducing bacteria from Arctic sediments. Knoblauch C; Jørgensen BB Environ Microbiol; 1999 Oct; 1(5):457-67. PubMed ID: 11207766 [TBL] [Abstract][Full Text] [Related]
26. Freezing Tolerance of Thermophilic Bacterial Endospores in Marine Sediments. Cramm MA; Chakraborty A; Li C; Ruff SE; Jørgensen BB; Hubert CRJ Front Microbiol; 2019; 10():945. PubMed ID: 31130935 [TBL] [Abstract][Full Text] [Related]
27. Endospores associated with deep seabed geofluid features in the eastern Gulf of Mexico. Rattray JE; Chakraborty A; Elizondo G; Ellefson E; Bernard B; Brooks J; Hubert CRJ Geobiology; 2022 Nov; 20(6):823-836. PubMed ID: 35993193 [TBL] [Abstract][Full Text] [Related]
28. Review of Desulfotomaculum species and proposal of the genera Desulfallas gen. nov., Desulfofundulus gen. nov., Desulfofarcimen gen. nov. and Desulfohalotomaculum gen. nov. Watanabe M; Kojima H; Fukui M Int J Syst Evol Microbiol; 2018 Sep; 68(9):2891-2899. PubMed ID: 30028279 [TBL] [Abstract][Full Text] [Related]
29. Metabolic activity of subsurface life in deep-sea sediments. D'Hondt S; Rutherford S; Spivack AJ Science; 2002 Mar; 295(5562):2067-70. PubMed ID: 11896277 [TBL] [Abstract][Full Text] [Related]
30. Inhibition of sulfate reducing bacteria in aquifer sediment by iron nanoparticles. Kumar N; Omoregie EO; Rose J; Masion A; Lloyd JR; Diels L; Bastiaens L Water Res; 2014 Mar; 51():64-72. PubMed ID: 24388832 [TBL] [Abstract][Full Text] [Related]
31. A Spatially Restricted Distribution of Thermophilic Endospores in Laptev Sea Shelf Sediments Suggests a Limited Dispersal by Local Geofluids. Ståhl E; Linderholm A; Brüchert V Geobiology; 2024; 22(5):e12618. PubMed ID: 39262196 [TBL] [Abstract][Full Text] [Related]
32. Endospore abundance, microbial growth and necromass turnover in deep sub-seafloor sediment. Lomstein BA; Langerhuus AT; D'Hondt S; Jørgensen BB; Spivack AJ Nature; 2012 Mar; 484(7392):101-4. PubMed ID: 22425999 [TBL] [Abstract][Full Text] [Related]
33. Molecular characterization of sulfate-reducing bacteria in a New England salt marsh. Bahr M; Crump BC; Klepac-Ceraj V; Teske A; Sogin ML; Hobbie JE Environ Microbiol; 2005 Aug; 7(8):1175-85. PubMed ID: 16011754 [TBL] [Abstract][Full Text] [Related]
34. Spatial-Temporal Pattern of Sulfate-Dependent Anaerobic Methane Oxidation in an Intertidal Zone of the East China Sea. Wang J; Hua M; Cai C; Hu J; Wang J; Yang H; Ma F; Qian H; Zheng P; Hu B Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30709818 [TBL] [Abstract][Full Text] [Related]
36. Anaerobic methane oxidation in metalliferous hydrothermal sediments: influence on carbon flux and decoupling from sulfate reduction. Wankel SD; Adams MM; Johnston DT; Hansel CM; Joye SB; Girguis PR Environ Microbiol; 2012 Oct; 14(10):2726-40. PubMed ID: 22827909 [TBL] [Abstract][Full Text] [Related]
37. [Thermophiles and life science in space]. Yamagishi A Biol Sci Space; 2000 Dec; 14(4):332-40. PubMed ID: 11589225 [TBL] [Abstract][Full Text] [Related]
38. Spore dipicolinic acid contents used for estimating the number of endospores in sediments. Fichtel J; Köster J; Rullkötter J; Sass H FEMS Microbiol Ecol; 2007 Sep; 61(3):522-32. PubMed ID: 17623026 [TBL] [Abstract][Full Text] [Related]
39. Seawater recirculation through subducting sediments sustains a deeply buried population of sulfate-reducing bacteria. Cox TL; Gan HM; Moreau JW Geobiology; 2019 Mar; 17(2):172-184. PubMed ID: 30474350 [TBL] [Abstract][Full Text] [Related]