These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 31743019)

  • 21. Theory of binless multi-state free energy estimation with applications to protein-ligand binding.
    Tan Z; Gallicchio E; Lapelosa M; Levy RM
    J Chem Phys; 2012 Apr; 136(14):144102. PubMed ID: 22502496
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reduced Free Energy Perturbation/Hamiltonian Replica Exchange Molecular Dynamics Method with Unbiased Alchemical Thermodynamic Axis.
    Jiang W; Thirman J; Jo S; Roux B
    J Phys Chem B; 2018 Oct; 122(41):9435-9442. PubMed ID: 30253098
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessing the effect of forcefield parameter sets on the accuracy of relative binding free energy calculations.
    Sun S; Huggins DJ
    Front Mol Biosci; 2022; 9():972162. PubMed ID: 36225254
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Repulsive Soft-Core Potentials for Efficient Alchemical Free Energy Calculations.
    Li Y; Nam K
    J Chem Theory Comput; 2020 Aug; 16(8):4776-4789. PubMed ID: 32559374
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accurate Calculation of Relative Binding Free Energies between Ligands with Different Net Charges.
    Chen W; Deng Y; Russell E; Wu Y; Abel R; Wang L
    J Chem Theory Comput; 2018 Dec; 14(12):6346-6358. PubMed ID: 30375870
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Critical Review of Validation, Blind Testing, and Real- World Use of Alchemical Protein-Ligand Binding Free Energy Calculations.
    Abel R; Wang L; Mobley DL; Friesner RA
    Curr Top Med Chem; 2017; 17(23):2577-2585. PubMed ID: 28413950
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of Different Automated Binding Pose Generation Approaches on Relative Binding Free Energy Simulations.
    Cappel D; Jerome S; Hessler G; Matter H
    J Chem Inf Model; 2020 Mar; 60(3):1432-1444. PubMed ID: 31986249
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessing the Accuracy and Efficiency of Free Energy Differences Obtained from
    Olehnovics E; Liu YM; Mehio N; Sheikh AY; Shirts MR; Salvalaglio M
    J Chem Theory Comput; 2024 Jul; 20(14):5913-5922. PubMed ID: 38984825
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Variational Method for Networkwide Analysis of Relative Ligand Binding Free Energies with Loop Closure and Experimental Constraints.
    Giese TJ; York DM
    J Chem Theory Comput; 2021 Mar; 17(3):1326-1336. PubMed ID: 33528251
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Extension of the Variational Free Energy Profile and Multistate Bennett Acceptance Ratio Methods for High-Dimensional Potential of Mean Force Profile Analysis.
    Giese TJ; Ekesan Ş; York DM
    J Phys Chem A; 2021 May; 125(19):4216-4232. PubMed ID: 33784093
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relative Binding Free Energy Calculations in Drug Discovery: Recent Advances and Practical Considerations.
    Cournia Z; Allen B; Sherman W
    J Chem Inf Model; 2017 Dec; 57(12):2911-2937. PubMed ID: 29243483
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermodynamic free energy methods to investigate shape transitions in bilayer membranes.
    Ramakrishnan N; Tourdot RW; Radhakrishnan R
    Int J Adv Eng Sci Appl Math; 2016 Jun; 8(2):88-100. PubMed ID: 27616867
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How to deal with multiple binding poses in alchemical relative protein-ligand binding free energy calculations.
    Kaus JW; Harder E; Lin T; Abel R; McCammon JA; Wang L
    J Chem Theory Comput; 2015 Jun; 11(6):2670-9. PubMed ID: 26085821
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Free energy calculations to estimate ligand-binding affinities in structure-based drug design.
    Reddy MR; Reddy CR; Rathore RS; Erion MD; Aparoy P; Reddy RN; Reddanna P
    Curr Pharm Des; 2014; 20(20):3323-37. PubMed ID: 23947646
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using physics-based pose predictions and free energy perturbation calculations to predict binding poses and relative binding affinities for FXR ligands in the D3R Grand Challenge 2.
    Athanasiou C; Vasilakaki S; Dellis D; Cournia Z
    J Comput Aided Mol Des; 2018 Jan; 32(1):21-44. PubMed ID: 29119352
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Accuracy assessment and automation of free energy calculations for drug design.
    Christ CD; Fox T
    J Chem Inf Model; 2014 Jan; 54(1):108-20. PubMed ID: 24256082
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alchemical Free Energy Differences in Flexible Molecules from Thermodynamic Integration or Free Energy Perturbation Combined with Driven Adiabatic Dynamics.
    Cuendet MA; Tuckerman ME
    J Chem Theory Comput; 2012 Oct; 8(10):3504-12. PubMed ID: 26592999
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the calculation of free energies over Hamiltonian and order parameters via perturbation and thermodynamic integration.
    Escobedo FA
    J Chem Phys; 2021 Sep; 155(11):114112. PubMed ID: 34551542
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Large scale free energy calculations for blind predictions of protein-ligand binding: the D3R Grand Challenge 2015.
    Deng N; Flynn WF; Xia J; Vijayan RS; Zhang B; He P; Mentes A; Gallicchio E; Levy RM
    J Comput Aided Mol Des; 2016 Sep; 30(9):743-751. PubMed ID: 27562018
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Elimination of Finite-Size Effects on Binding Free Energies via the Warp-Drive Method.
    Ekimoto T; Yamane T; Ikeguchi M
    J Chem Theory Comput; 2018 Dec; 14(12):6544-6559. PubMed ID: 30404450
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.