These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 31743020)
1. General Way To Construct Micro- and Mesoporous Metal-Organic Framework-Based Porous Liquids. He S; Chen L; Cui J; Yuan B; Wang H; Wang F; Yu Y; Lee Y; Li T J Am Chem Soc; 2019 Dec; 141(50):19708-19714. PubMed ID: 31743020 [TBL] [Abstract][Full Text] [Related]
2. Preserving Mesoporosity in Type III Porous Liquids through Dual-layer Surface Weaving. Li S; Wang D; Lee Y; Li T Angew Chem Int Ed Engl; 2024 Jun; 63(24):e202405288. PubMed ID: 38588044 [TBL] [Abstract][Full Text] [Related]
3. Porous Metal-Organic Framework Liquids for Enhanced CO Zou YH; Huang YB; Si DH; Yin Q; Wu QJ; Weng Z; Cao R Angew Chem Int Ed Engl; 2021 Sep; 60(38):20915-20920. PubMed ID: 34278674 [TBL] [Abstract][Full Text] [Related]
4. Polymer-Coated Covalent Organic Frameworks as Porous Liquids for Gas Storage. Mow RE; Russell-Parks GA; Redwine GEB; Petel BE; Gennett T; Braunecker WA Chem Mater; 2024 Feb; 36(3):1579-1590. PubMed ID: 38370283 [TBL] [Abstract][Full Text] [Related]
5. Exploitation of Pore Structure for Increased CO Hurlock MJ; Lu L; Sarswat A; Chang CW; Rimsza JM; Sholl DS; Lively RP; Nenoff TM ACS Appl Mater Interfaces; 2024 Sep; 16(38):51639-51648. PubMed ID: 39277871 [TBL] [Abstract][Full Text] [Related]
6. Preserving Macroporosity in Type III Porous Liquids. Dai D; Luo L; Zhu Q; Wang D; Li T Angew Chem Int Ed Engl; 2023 Jun; 62(25):e202303102. PubMed ID: 37071477 [TBL] [Abstract][Full Text] [Related]
7. Transforming Metal-Organic Frameworks into Porous Liquids via a Covalent Linkage Strategy for CO Wang D; Xin Y; Li X; Ning H; Wang Y; Yao D; Zheng Y; Meng Z; Yang Z; Pan Y; Li P; Wang H; He Z; Fan W ACS Appl Mater Interfaces; 2021 Jan; 13(2):2600-2609. PubMed ID: 33403847 [TBL] [Abstract][Full Text] [Related]
8. Underlying Polar and Nonpolar Modification MOF-Based Factors that Influence Permanent Porosity in Porous Liquids. Mahdavi H; Eden NT; Doherty CM; Acharya D; Smith SJD; Mulet X; Hill MR ACS Appl Mater Interfaces; 2022 May; 14(20):23392-9. PubMed ID: 35544409 [TBL] [Abstract][Full Text] [Related]
9. Accelerating Metal-Organic Framework Selection for Type III Porous Liquids by Synergizing Machine Learning and Molecular Simulation. Sheng L; Wang Y; Mou X; Xu B; Chen Z ACS Appl Mater Interfaces; 2023 Dec; 15(48):56253-56264. PubMed ID: 37988477 [TBL] [Abstract][Full Text] [Related]
10. Effects of Particle Size on the Gas Uptake Kinetics and Physical Properties of Type III Porous Liquids. Liu S; Lai B; James SL ACS Appl Mater Interfaces; 2024 Apr; 16(13):16436-16444. PubMed ID: 38512108 [TBL] [Abstract][Full Text] [Related]
11. Transformation of Type III to Type II Porous Liquids by Tuning Surface Rigidity of Rhodium(II)-Based Metal-Organic Polyhedra for CO Dinker MK; Li MM; Zhao K; Zuo M; Ding L; Liu XQ; Sun LB Angew Chem Int Ed Engl; 2023 Aug; 62(31):e202306495. PubMed ID: 37277694 [TBL] [Abstract][Full Text] [Related]
12. Metal organic framework-organic polymer monolith stationary phases for capillary electrochromatography and nano-liquid chromatography. Huang HY; Lin CL; Wu CY; Cheng YJ; Lin CH Anal Chim Acta; 2013 May; 779():96-103. PubMed ID: 23663677 [TBL] [Abstract][Full Text] [Related]
13. Defect-Free MOF-Based Mixed-Matrix Membranes Obtained by Corona Cross-Linking. Katayama Y; Bentz KC; Cohen SM ACS Appl Mater Interfaces; 2019 Apr; 11(13):13029-13037. PubMed ID: 30855936 [TBL] [Abstract][Full Text] [Related]
14. Gated Channels and Selectivity Tuning of CO2 over N2 Sorption by Post-Synthetic Modification of a UiO-66-Type Metal-Organic Framework. Kronast A; Eckstein S; Altenbuchner PT; Hindelang K; Vagin SI; Rieger B Chemistry; 2016 Aug; 22(36):12800-7. PubMed ID: 27483397 [TBL] [Abstract][Full Text] [Related]
15. Breathing porous liquids based on responsive metal-organic framework particles. Koutsianos A; Pallach R; Frentzel-Beyme L; Das C; Paulus M; Sternemann C; Henke S Nat Commun; 2023 Jul; 14(1):4200. PubMed ID: 37452021 [TBL] [Abstract][Full Text] [Related]
16. New Class of Type III Porous Liquids: A Promising Platform for Rational Adjustment of Gas Sorption Behavior. Shan W; Fulvio PF; Kong L; Schott JA; Do-Thanh CL; Tian T; Hu X; Mahurin SM; Xing H; Dai S ACS Appl Mater Interfaces; 2018 Jan; 10(1):32-36. PubMed ID: 29277992 [TBL] [Abstract][Full Text] [Related]
17. Transforming Porous Silica Nanoparticles into Porous Liquids with Different Canopy Structures for CO Sheng L; Chen Z; Wang X; Farooq AS ACS Omega; 2022 Feb; 7(7):5687-5697. PubMed ID: 35224330 [TBL] [Abstract][Full Text] [Related]
18. Influence of Filler Pore Structure and Polymer on the Performance of MOF-Based Mixed-Matrix Membranes for CO Sabetghadam A; Liu X; Benzaqui M; Gkaniatsou E; Orsi A; Lozinska MM; Sicard C; Johnson T; Steunou N; Wright PA; Serre C; Gascon J; Kapteijn F Chemistry; 2018 Jun; 24(31):7949-7956. PubMed ID: 29573349 [TBL] [Abstract][Full Text] [Related]
19. Free-standing metal-organic framework (MOF) monolayers by self-assembly of polymer-grafted nanoparticles. Barcus K; Cohen SM Chem Sci; 2020 Aug; 11(32):8433-8437. PubMed ID: 34123102 [TBL] [Abstract][Full Text] [Related]
20. Graphite oxide/metal-organic framework (MIL-101): remarkable performance in the adsorptive denitrogenation of model fuels. Ahmed I; Khan NA; Jhung SH Inorg Chem; 2013 Dec; 52(24):14155-61. PubMed ID: 24299306 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]